CCPortal
DOI10.1016/j.quascirev.2019.105867
Drivers of Late Pleistocene human survival and dispersal: an agent-based modeling and machine learning approach
R. Vahdati A.; Weissmann J.D.; Timmermann A.; Ponce de León M.S.; Zollikofer C.P.E.
发表日期2019
ISSN0277-3791
卷号221
英文摘要Understanding Late Pleistocene human dispersals from Africa requires understanding a multifaceted problem with factors varying in space and time, such as climate, ecology, human behavior, and population dynamics. To understand how these factors interact to affect human survival and dispersal, we have developed a realistic agent-based model that includes geographic features, climate change, and time-varying vegetation and food resources. To enhance computational efficiency, we further apply machine learning algorithms. Our approach is new in that it is designed to systematically evaluate a large-scale agent-based model, and identify its key parameters and sensitivities. Results show that parameter interactions are the major source in generating variability in human dispersal and survival/extinction scenarios. In realistic scenarios with geographical features and time-evolving climatic conditions, random fluctuations become a major source of variability in arrival times and success. Furthermore, parameter settings as different as 92% of maximum possible difference, and occupying more than 30% of parameter space can result in similar dispersal scenarios. This suggests that historical contingency (similar causes – different effects) and equifinality (different causes – similar effects) are primary constituents of human dispersal scenarios. While paleoanthropology, archaeology and paleogenetics now provide insights into patterns of human dispersals at an unprecedented level of detail, elucidating the causes underlying these patterns remains a major challenge. © 2019 Elsevier Ltd
英文关键词Climate dynamics; Data analysis; Data treatment; Global; Human dispersal; Machine learning; Model validation; Out of Africa; Paleogeography; Pleistocene; Sensitivity analysis
语种英语
scopus关键词Autonomous agents; Behavioral research; Climate change; Climate models; Computational efficiency; Data reduction; Learning algorithms; Learning systems; Sensitivity analysis; Simulation platform; Climate dynamics; Data treatment; Global; Human dispersal; Model validation; Out of Africa; Paleogeography; Pleistocene; Machine learning; anthropology; climate conditions; data assimilation; dispersal; extinction; global change; human evolution; individual-based model; machine learning; model validation; paleogeography; Pleistocene; sensitivity analysis; survival; Africa
来源期刊Quaternary Science Reviews
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/151775
作者单位Department of Anthropology, University of Zurich, Zurich, Switzerland; Pusan National University, Pusan, South Korea; Center for Climate Physics, Institute for Basic Science, Busan, South Korea
推荐引用方式
GB/T 7714
R. Vahdati A.,Weissmann J.D.,Timmermann A.,et al. Drivers of Late Pleistocene human survival and dispersal: an agent-based modeling and machine learning approach[J],2019,221.
APA R. Vahdati A.,Weissmann J.D.,Timmermann A.,Ponce de León M.S.,&Zollikofer C.P.E..(2019).Drivers of Late Pleistocene human survival and dispersal: an agent-based modeling and machine learning approach.Quaternary Science Reviews,221.
MLA R. Vahdati A.,et al."Drivers of Late Pleistocene human survival and dispersal: an agent-based modeling and machine learning approach".Quaternary Science Reviews 221(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[R. Vahdati A.]的文章
[Weissmann J.D.]的文章
[Timmermann A.]的文章
百度学术
百度学术中相似的文章
[R. Vahdati A.]的文章
[Weissmann J.D.]的文章
[Timmermann A.]的文章
必应学术
必应学术中相似的文章
[R. Vahdati A.]的文章
[Weissmann J.D.]的文章
[Timmermann A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。