CCPortal
DOI10.1016/j.marpolbul.2019.110580
Rummaging through the bin: Modelling marine litter distribution using Artificial Neural Networks
Franceschini S.; Mattei F.; D'Andrea L.; Di Nardi A.; Fiorentino F.; Garofalo G.; Scardi M.; Cataudella S.; Russo T.
发表日期2019
ISSN0025326X
卷号149
英文摘要Marine litter has significant ecological, social and economic impacts, ultimately raising welfare and conservation concerns. Assessing marine litter hotspots or inferring potential areas of accumulation are challenging topics of marine research. Nevertheless, models able to predict the distribution of marine litter on the seabed are still limited. In this work, a set of Artificial Neural Networks were trained to both model the effect of environmental descriptors on litter distribution and estimate the amount of marine litter in the Central Mediterranean Sea. The first goal involved the use of self-organizing maps in order to highlight the importance of environmental descriptors in affecting marine litter density. The second goal was achieved by developing a multilayer perceptron model, which proved to be an efficient method to estimate the regional quantity of seabed marine litter. Results demonstrated that machine learning could be a suitable approach in the assessment of the marine litter issues. © 2019
英文关键词Machine learning; Mediterranean; MEDITS; Multilayer perceptron; Self-organizing maps
语种英语
scopus关键词Conformal mapping; Learning systems; Machine learning; Multilayer neural networks; Multilayers; Central Mediterranean; Descriptors; Hotspots; Marine litter; Marine research; Mediterranean; MEDITS; Social and economic impacts; Self organizing maps; artificial neural network; litter; marine pollution; modeling; spatial distribution; article; human; Mediterranean Sea; multilayer perceptron; algorithm; environmental monitoring; machine learning; procedures; Sicily; waste; Mediterranean Sea; Algorithms; Environmental Monitoring; Machine Learning; Mediterranean Sea; Neural Networks, Computer; Sicily; Waste Products
来源期刊Marine Pollution Bulletin
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/149513
作者单位Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica snc, Rome, 00133, Italy; Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM) – (CNR), Italy; CoNISMa, Piazzale Flaminio, 9, Rome, 00196, Italy
推荐引用方式
GB/T 7714
Franceschini S.,Mattei F.,D'Andrea L.,et al. Rummaging through the bin: Modelling marine litter distribution using Artificial Neural Networks[J],2019,149.
APA Franceschini S..,Mattei F..,D'Andrea L..,Di Nardi A..,Fiorentino F..,...&Russo T..(2019).Rummaging through the bin: Modelling marine litter distribution using Artificial Neural Networks.Marine Pollution Bulletin,149.
MLA Franceschini S.,et al."Rummaging through the bin: Modelling marine litter distribution using Artificial Neural Networks".Marine Pollution Bulletin 149(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Franceschini S.]的文章
[Mattei F.]的文章
[D'Andrea L.]的文章
百度学术
百度学术中相似的文章
[Franceschini S.]的文章
[Mattei F.]的文章
[D'Andrea L.]的文章
必应学术
必应学术中相似的文章
[Franceschini S.]的文章
[Mattei F.]的文章
[D'Andrea L.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。