CCPortal
DOI10.1007/s00382-019-05001-x
An assessment of scale-dependent variability and bias in global prediction models
Žagar N.; Kosovelj K.; Manzini E.; Horvat M.; Castanheira J.
发表日期2020
ISSN0930-7575
起始页码287
结束页码306
卷号54期号:2020-01-02
英文摘要The paper presents a method for the scale-dependent validation of the spatio-temporal variability in global weather or climate models and for their bias quantification in relation to dynamics. The method provides a relationship between the bias and simulated spatial and temporal variance by a model in comparison with verifying reanalysis data. For the low resolution (T30L8) subset of ERA-20C data, it was found that 80–90% (depending on season) of the global interannual variance is at planetary scales (zonal wavenumbers k = 0−3), and only about 1% of the variance is at scales with k> 7. The reanalysis is used to validate a T30L8 GCM in two configurations, one with the prescribed sea-surface temperature (SST) and another using a slab ocean model. Although the model with the prescribed SST represents the average properties of surface fields well, the interannual variability is underestimated at all scales. Similar to variability, model bias is strongly scale dependent. Biases found in the experiment with the prescribed SST are largely increased in the experiment using a slab ocean, especially in k= 0 , in scales with missing variability and in seasons with poorly simulated energy distribution. The perfect model scenario (a comparison between the GCM coupled to a slab ocean vs. the same model with prescribed SSTs) shows that the representation of the ocean is not critical for synoptic to subsynoptic variability, but essential for capturing the planetary scales. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
英文关键词Bias spectra; Climate models; Model validation; Spatio-temporal variability; Variability quantification
语种英语
scopus关键词annual variation; climate modeling; climate prediction; model validation; numerical model; sea surface temperature; spatial resolution; spatiotemporal analysis
来源期刊Climate Dynamics
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/145763
作者单位Meteorologisches Institut, CEN, Universität Hamburg, Grindelberg 7, Hamburg, 20144, Germany; Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, 1000, Slovenia; University of Ljubljana, Jadranska 19, Ljubljana, 1000, Slovenia; Max-Planck-Institut fur Meteorologie, Bundesstraße 53, Hamburg, 20146, Germany; CESAM and Department of Physics, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
推荐引用方式
GB/T 7714
Žagar N.,Kosovelj K.,Manzini E.,et al. An assessment of scale-dependent variability and bias in global prediction models[J],2020,54(2020-01-02).
APA Žagar N.,Kosovelj K.,Manzini E.,Horvat M.,&Castanheira J..(2020).An assessment of scale-dependent variability and bias in global prediction models.Climate Dynamics,54(2020-01-02).
MLA Žagar N.,et al."An assessment of scale-dependent variability and bias in global prediction models".Climate Dynamics 54.2020-01-02(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Žagar N.]的文章
[Kosovelj K.]的文章
[Manzini E.]的文章
百度学术
百度学术中相似的文章
[Žagar N.]的文章
[Kosovelj K.]的文章
[Manzini E.]的文章
必应学术
必应学术中相似的文章
[Žagar N.]的文章
[Kosovelj K.]的文章
[Manzini E.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。