CCPortal
DOI10.1007/s00382-020-05387-z
Role of convective and microphysical processes on the simulation of monsoon intraseasonal oscillation
Dutta U.; Chaudhari H.S.; Hazra A.; Pokhrel S.; Saha S.K.; Veeranjaneyulu C.
发表日期2020
ISSN0930-7575
起始页码2377
结束页码2403
卷号55
英文摘要The study explores the role of ice-phase microphysics and convection for the better simulation of Indian summer monsoon rainfall (ISMR) and monsoon intraseasonal oscillation (MISO). Sensitivity experiments have been performed with coupled climate model- CFSv2 using different microphysics (with and without ice phase processes) and convective [Simple Arakawa Schubert (SAS), new SAS (NSAS)] parameterization schemes. Results reveal that the ice phase microphysics parameterization scheme performs better in the simulation of active and break composites of the ISMR as compared to ice-free runs. The difference between ice (ICE) and ice-free run (NOICE) can be attributed to the availability of copious cloud condensate at the upper level. Better representation of upper-level cloud condensate in ICE run (i.e., with ice phase microphysics) leads to correct representation of specific humidity in active and break spells. Proper depiction of upper-level cloud condensate further leads to realistic modulation of atmospheric circulation and better simulation of convection (as represented by OLR) in active and break spells of ICE run. As a result, better simulation of active and break occurs in the ICE run. In contrast, NOICE run (i.e., with warm phase microphysics) fails to depict upper-level cloud condensate in the active phase. It leads to an improper representation of specific humidity. Circulation features are also unrealistic, and convection is suppressed in the active phase. As a result, the active phase is not adequately simulated in the NOICE run. NOICE run composites during active spells depict the overestimation of the ascending branch of Hadley circulation as compared to MERRA reanalysis, which is relatively better in ICE run. NOICE run composites during active spells depict the overestimation of the ascending branch of Walker circulation as compared to MERRA reanalysis, which is further improved in ICE runs. The north–south space–time spectra of daily rainfall anomaly are also better captured by ICE run as compared to NOICE run. Results indicate that ice-phase processes are more important for capturing the difference between active and break composites, while convection parameterization is relatively more important for the intraseasonal variance analyses. Further improvements in ice microphysics parameterization with better convection schemes in models will be helpful for the betterment of MISO and will lead to the improved simulation of monsoon. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
语种英语
scopus关键词atmospheric convection; climate modeling; cloud microphysics; monsoon; oscillation; seasonal variation; sensitivity analysis; summer
来源期刊Climate Dynamics
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/145298
作者单位Indian Institute of Tropical Meteorology, Dr.Homi Bhabha Road, NCL Post, Pashan, Pune, 411008, India; Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, Pune, India
推荐引用方式
GB/T 7714
Dutta U.,Chaudhari H.S.,Hazra A.,et al. Role of convective and microphysical processes on the simulation of monsoon intraseasonal oscillation[J],2020,55.
APA Dutta U.,Chaudhari H.S.,Hazra A.,Pokhrel S.,Saha S.K.,&Veeranjaneyulu C..(2020).Role of convective and microphysical processes on the simulation of monsoon intraseasonal oscillation.Climate Dynamics,55.
MLA Dutta U.,et al."Role of convective and microphysical processes on the simulation of monsoon intraseasonal oscillation".Climate Dynamics 55(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dutta U.]的文章
[Chaudhari H.S.]的文章
[Hazra A.]的文章
百度学术
百度学术中相似的文章
[Dutta U.]的文章
[Chaudhari H.S.]的文章
[Hazra A.]的文章
必应学术
必应学术中相似的文章
[Dutta U.]的文章
[Chaudhari H.S.]的文章
[Hazra A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。