CCPortal
DOI10.1016/j.atmosres.2020.105055
Acquiring unbiased rainfall duration and intensity data from tipping-bucket rain gauges: A new approach using synchronised acoustic recordings
Dunkerley D.
发表日期2020
ISSN0169-8095
卷号244
英文摘要Tipping-bucket rain gauges (TBRGs) are an established and proven means of recording rainfall amount, but are not well-suited to the estimation of rainfall duration, owing to lag times arising from bucket filling. TBRG data are unable to reveal aspects of rainfall arrival such as short-term rainfall intermittency; nor can they adequately capture the start and end times of low intensity rain. These limitations pose challenges for the estimation of rainfall rates, for which accurate rain duration must be known. Here, a new approach to this problem is explored: the use of acoustic recording apparatus co-located with a TBRG for the principal purpose of identifying true raining time. From an Australian wet tropical ground observing station, TBRG data were processed to yield 5 min, 15 min, and 1 h accumulated rainfall amounts, and corresponding estimates of raining time. These were compared with raining time estimated from high-precision WAV recordings of raindrop arrival sensed by a responsive drum skin. The acoustic recording allowed true raining time to be measured, and compared with the TBRG data. Only rarely did the TBRG rain durations provide acceptable accuracy; generally, they were severely biased. Moreover, the 5 min data consistently provided estimates with larger bias than did 15 min or 1 h data. In general, none of the TBRG rainfall data provided acceptable estimates of rain duration, and hence derived intensity data were also badly biased. These findings have clear implications for the widespread use of time-aggregated TBRG data, such as hourly rainfall amounts. These may yield little or no accurate information on rainfall intensities; the marked bias of rain duration estimated from TBRG data may hamper attempts to detect and quantify secular change in rainfall frequency, duration, and intensity. Acoustic methods provide an economical means to provide less biased data. © 2020
英文关键词Acoustic rain recording; Queensland, Australia; Rainfall duration; Rainfall intensity; Rainfall rate; Tipping-bucket rain gauge
语种英语
scopus关键词Rain gages; Accumulated rainfall; Acoustic method; High-precision; Rainfall duration; Rainfall frequency; Rainfall intensity; Secular changes; Tipping bucket rain gauge; Rain; acoustic method; estimation method; precipitation intensity; rainfall; raingauge; Australia
来源期刊Atmospheric Research
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/141859
作者单位School of Earth, Atmosphere and Environment, Faculty of Science, Monash University, Melbourne, Victoria 3800, Australia
推荐引用方式
GB/T 7714
Dunkerley D.. Acquiring unbiased rainfall duration and intensity data from tipping-bucket rain gauges: A new approach using synchronised acoustic recordings[J],2020,244.
APA Dunkerley D..(2020).Acquiring unbiased rainfall duration and intensity data from tipping-bucket rain gauges: A new approach using synchronised acoustic recordings.Atmospheric Research,244.
MLA Dunkerley D.."Acquiring unbiased rainfall duration and intensity data from tipping-bucket rain gauges: A new approach using synchronised acoustic recordings".Atmospheric Research 244(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dunkerley D.]的文章
百度学术
百度学术中相似的文章
[Dunkerley D.]的文章
必应学术
必应学术中相似的文章
[Dunkerley D.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。