CCPortal
DOI10.1016/j.atmosres.2020.105269
A two-moment machine learning parameterization of the autoconversion process
Alfonso L.; Zamora J.M.
发表日期2021
ISSN0169-8095
卷号249
英文摘要Autoconversion is the mass transfer from cloud to precipitation water in an early stage of cloud development, and is the dominant process in the formation of embryonic droplets that trigger precipitation formation. The accurate parameterization of this process is key, in order to improve the interaction between cloud microphysics and cloud dynamics for models from cloud scale to the global climate scale. For model based parameterizations of the auto-conversion process, the usual approach to develop an autoconversion parameterization is by curve fitting the autoconversion rates obtained from simulations or numerical solutions of the kinetic collection equation under a wide range of initial conditions. However, in this case, the autoconversion is modeled by a function that is a nonlinear product of liquid water content and droplet concentration and depends on a small number of parameters. As a result, a large amount of scatter around the actual values can be obtained, indicating a weak relationship between actual and fitted autoconversion rates. The purpose of this paper is to analyze whether neural networks are better than traditional curve fitting or regression to obtain parameterizations of autoconversion. Then, a deep neural network was trained from an autconversion rates dataset generated by solving the kinetic collection equation for a wide range of droplet concentrations and liquid water contents. The obtained machine learned parameterization shows a very good match with actual rates calculated from the kinetic collection equation. © 2020 Elsevier B.V.
英文关键词Autoconversion process; Bulk microphysical parameterizations; Cloud microphysics; Machine learning; Machine learning parameterizations; Neural networks
语种英语
scopus关键词Climate models; Curve fitting; Deep learning; Deep neural networks; Drops; Kinetics; Mass transfer; Neural networks; Precipitation (meteorology); Autoconversion parameterization; Cloud microphysics; Conversion process; Droplet concentration; Initial conditions; Liquid water content; Numerical solution; Precipitation formation; Parameterization; artificial neural network; cloud microphysics; concentration (composition); embryo; machine learning; parameterization; water content
来源期刊Atmospheric Research
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/141661
作者单位Autonomous University of Mexico City, Prolongacion San Isidro 151, Mexico City, 09790, Mexico; LUFAC Computación SA de CV, Savona 30, Fracc. Residencial Acoxpa, Mexico City, 14300, Mexico
推荐引用方式
GB/T 7714
Alfonso L.,Zamora J.M.. A two-moment machine learning parameterization of the autoconversion process[J],2021,249.
APA Alfonso L.,&Zamora J.M..(2021).A two-moment machine learning parameterization of the autoconversion process.Atmospheric Research,249.
MLA Alfonso L.,et al."A two-moment machine learning parameterization of the autoconversion process".Atmospheric Research 249(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alfonso L.]的文章
[Zamora J.M.]的文章
百度学术
百度学术中相似的文章
[Alfonso L.]的文章
[Zamora J.M.]的文章
必应学术
必应学术中相似的文章
[Alfonso L.]的文章
[Zamora J.M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。