CCPortal
DOI10.5194/acp-20-9419-2020
The role of contact angle and pore width on pore condensation and freezing
O. David R.; Fahrni J.; Marcolli C.; Mahrt F.; Brühwiler D.; A. Kanji Z.
发表日期2020
ISSN1680-7316
起始页码9419
结束页码9440
卷号20期号:15
英文摘要It has recently been shown that pore condensation and freezing (PCF) is a mechanism responsible for ice formation under cirrus cloud conditions. PCF is defined as the condensation of liquid water in narrow capillaries below water saturation due to the inverse Kelvin effect, followed by either heterogeneous or homogeneous nucleation depending on the temperature regime and presence of an ice-nucleating active site. By using sol-gel synthesized silica with well-defined pore diameters, morphology and distinct chemical surface-functionalization, the role of the water-silica contact angle and pore width on PCF is investigated. We find that for the pore diameters (2.2-9.2 nm) and water contact angles (15-78ĝ) covered in this study, our results reveal that the water contact angle plays an important role in predicting the humidity required for pore filling, while the pore diameter determines the ability of pore water to freeze. For T>235 K and below water saturation, pore diameters and water contact angles were not able to predict the freezing ability of the particles, suggesting an absence of active sites; thus ice nucleation did not proceed via a PCF mechanism. Rather, the ice-nucleating ability of the particles depended solely on chemical functionalization. Therefore, parameterizations for the ice-nucleating abilities of particles in cirrus conditions should differ from parameterizations at mixed-phase clouds conditions. Our results support PCF as the atmospherically relevant ice nucleation mechanism below water saturation when porous surfaces are encountered in the troposphere. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
语种英语
scopus关键词cirrus; cloud microphysics; condensation; freezing; ice mechanics; nucleation; saturation
来源期刊Atmospheric Chemistry and Physics
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/141164
作者单位Institute for Atmospheric and Climate Science, Eth Zürich, Zurich, 8092, Switzerland; Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences (ZHAW), Wädenswil, 8820, Switzerland; Department of Geosciences, University of Oslo, Oslo, 0315, Norway; Rise Processum Ab Bioeconomy and Health, Örnsköldsvik, 891 22, Sweden; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
推荐引用方式
GB/T 7714
O. David R.,Fahrni J.,Marcolli C.,et al. The role of contact angle and pore width on pore condensation and freezing[J],2020,20(15).
APA O. David R.,Fahrni J.,Marcolli C.,Mahrt F.,Brühwiler D.,&A. Kanji Z..(2020).The role of contact angle and pore width on pore condensation and freezing.Atmospheric Chemistry and Physics,20(15).
MLA O. David R.,et al."The role of contact angle and pore width on pore condensation and freezing".Atmospheric Chemistry and Physics 20.15(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[O. David R.]的文章
[Fahrni J.]的文章
[Marcolli C.]的文章
百度学术
百度学术中相似的文章
[O. David R.]的文章
[Fahrni J.]的文章
[Marcolli C.]的文章
必应学术
必应学术中相似的文章
[O. David R.]的文章
[Fahrni J.]的文章
[Marcolli C.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。