Climate Change Data Portal
DOI | 10.5194/acp-20-10889-2020 |
CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models | |
Weber J.; Archer-Nicholls S.; Griffiths P.; Berndt T.; Jenkin M.; Gordon H.; Knote C.; Archibald A.T. | |
发表日期 | 2020 |
ISSN | 1680-7316 |
起始页码 | 10889 |
结束页码 | 10910 |
卷号 | 20期号:18 |
英文摘要 | We present here results from a new mechanism, CRI-HOM, which we have developed to simulate the formation of highly oxygenated organic molecules (HOMs) from the gas-phase oxidation of-pinene, one of the most widely emitted biogenic volatile organic compounds (BVOCs) by mass. This concise scheme adds 12 species and 66 reactions to the Common Representative Intermediates (CRI) mechanism v2.2 Reduction 5 and enables the representation of semi-explicit HOM treatment suitable for long-term global chemistry-aerosol-climate modelling, within a comprehensive tropospheric chemical mechanism. The key features of the new mechanism are (i) representation of the autoxidation of peroxy radicals from the hydroxyl radical and ozone initiated reactions of-pinene, (ii) formation of multiple generations of peroxy radicals, (iii) formation of accretion products (dimers), and (iv) isoprene-driven suppression of accretion product formation, as observed in experiments. The mechanism has been constructed through optimisation against a series of flow tube laboratory experiments. The mechanism predicts a HOM yield of 2 %-4.5% under conditions of low to moderate NOx , in line with experimental observations, and reproduces qualitatively the decline in HOM yield and concentration at higher NOx levels. The mechanism gives a HOM yield that also increases with temperature, in line with observations, and our mechanism compares favourably to some of the limited observations of [HOM] observed in the boreal forest in Finland and in the southeast USA. The reproduction of isoprene-driven suppression of HOMs is a key step forward as it enables global climate models to capture the interaction between the major BVOC species, along with the potential climatic feedbacks. This suppression is demonstrated when the mechanism is used to simulate atmospheric profiles over the boreal forest and rainforest; different isoprene concentrations result in different [HOM] distributions, illustrating the importance of BVOC interactions in atmospheric composition and climate. Finally particle nucleation rates calculated from [HOM] in present-day and preindustrial atmospheres suggest that "sulfuric-acid-free"nucleation can compete effectively with other nucleation pathways in the boreal forest, particularly in the pre-industrial period, with important implications for the aerosol budget and radiative forcing. © Author(s) 2020. |
语种 | 英语 |
scopus关键词 | aerosol; atmospheric chemistry; chemical reaction; climate modeling; formation mechanism; oxidation; volatile organic compound |
来源期刊 | Atmospheric Chemistry and Physics
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/141094 |
作者单位 | Centre for Atmospheric Science Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; National Centre for Atmospheric Science Department of Chemistry, University of CambridgeCB2 1EW, United Kingdom; Atmospheric Chemistry Department (ACD) Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, 04318, Germany; Atmospheric Chemistry Services Okehampton, Devon, EX20 4BQ, United Kingdom; Eng. Research Accelerator and Center for Atmospheric Particle Studies Carnegie Mellon University, Pittsburgh, PA 15213, United States; Meteorologisches Institut Ludwig-Maximilians-Universität München, Munich, 80333, Germany |
推荐引用方式 GB/T 7714 | Weber J.,Archer-Nicholls S.,Griffiths P.,et al. CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models[J],2020,20(18). |
APA | Weber J..,Archer-Nicholls S..,Griffiths P..,Berndt T..,Jenkin M..,...&Archibald A.T..(2020).CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models.Atmospheric Chemistry and Physics,20(18). |
MLA | Weber J.,et al."CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models".Atmospheric Chemistry and Physics 20.18(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。