CCPortal
DOI10.1126/science.aay3062
Crystal symmetry determination in electron diffraction using machine learning
Kaufmann K.; Zhu C.; Rosengarten A.S.; Maryanovsky D.; Harrington T.J.; Marin E.; Vecchio K.S.
发表日期2020
ISSN0036-8075
起始页码564
结束页码568
卷号367期号:6477
英文摘要Electron backscatter diffraction (EBSD) is one of the primary tools for crystal structure determination. However, this method requires human input to select potential phases for Hough-based or dictionary pattern matching and is not well suited for phase identification. Automated phase identification is the first step in making EBSD into a high-throughput technique. We used a machine learning-based approach and developed a general methodology for rapid and autonomous identification of the crystal symmetry from EBSD patterns. We evaluated our algorithm with diffraction patterns from materials outside the training set. The neural network assigned importance to the same symmetry features that a crystallographer would use for structure identification. © 2020 American Association for the Advancement of Science. All rights reserved.
关键词algorithmartificial neural networkcrystal structuredetection methodidentification methodmachine learningalgorithmarticlecrystalelectron diffractionhumanmachine learning
语种英语
来源机构Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/133760
推荐引用方式
GB/T 7714
Kaufmann K.,Zhu C.,Rosengarten A.S.,et al. Crystal symmetry determination in electron diffraction using machine learning[J]. Science,2020,367(6477).
APA Kaufmann K..,Zhu C..,Rosengarten A.S..,Maryanovsky D..,Harrington T.J..,...&Vecchio K.S..(2020).Crystal symmetry determination in electron diffraction using machine learning.,367(6477).
MLA Kaufmann K.,et al."Crystal symmetry determination in electron diffraction using machine learning".367.6477(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kaufmann K.]的文章
[Zhu C.]的文章
[Rosengarten A.S.]的文章
百度学术
百度学术中相似的文章
[Kaufmann K.]的文章
[Zhu C.]的文章
[Rosengarten A.S.]的文章
必应学术
必应学术中相似的文章
[Kaufmann K.]的文章
[Zhu C.]的文章
[Rosengarten A.S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。