Climate Change Data Portal
DOI | 10.1126/science.aay3062 |
Crystal symmetry determination in electron diffraction using machine learning | |
Kaufmann K.; Zhu C.; Rosengarten A.S.; Maryanovsky D.; Harrington T.J.; Marin E.; Vecchio K.S. | |
发表日期 | 2020 |
ISSN | 0036-8075 |
起始页码 | 564 |
结束页码 | 568 |
卷号 | 367期号:6477 |
英文摘要 | Electron backscatter diffraction (EBSD) is one of the primary tools for crystal structure determination. However, this method requires human input to select potential phases for Hough-based or dictionary pattern matching and is not well suited for phase identification. Automated phase identification is the first step in making EBSD into a high-throughput technique. We used a machine learning-based approach and developed a general methodology for rapid and autonomous identification of the crystal symmetry from EBSD patterns. We evaluated our algorithm with diffraction patterns from materials outside the training set. The neural network assigned importance to the same symmetry features that a crystallographer would use for structure identification. © 2020 American Association for the Advancement of Science. All rights reserved. |
关键词 | algorithmartificial neural networkcrystal structuredetection methodidentification methodmachine learningalgorithmarticlecrystalelectron diffractionhumanmachine learning |
语种 | 英语 |
来源机构 | Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/133760 |
推荐引用方式 GB/T 7714 | Kaufmann K.,Zhu C.,Rosengarten A.S.,et al. Crystal symmetry determination in electron diffraction using machine learning[J]. Science,2020,367(6477). |
APA | Kaufmann K..,Zhu C..,Rosengarten A.S..,Maryanovsky D..,Harrington T.J..,...&Vecchio K.S..(2020).Crystal symmetry determination in electron diffraction using machine learning.,367(6477). |
MLA | Kaufmann K.,et al."Crystal symmetry determination in electron diffraction using machine learning".367.6477(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。