CCPortal
DOI10.1016/j.atmosres.2020.104861
Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning
Liu Y.-Y.; Li L.; Liu Y.-S.; Chan P.W.; Zhang W.-H.
发表日期2020
ISSN0169-8095
卷号237
英文摘要Short-duration rainstorm, the main cause of urban waterlogging and mountain torrents, is characterized by sudden, intense, and highly destructive rainfall. Understanding the dynamic temporal and spatial distribution patterns of short-duration rainstorm can help to predict their development processes. In this study, the dynamic temporal and spatial distribution models of various types of short-duration rainstorm events were established by using machine learning (ML) method based on the rainfall data of the recent decade in a Chinese coastal megacity, Shenzhen. The dynamic characteristics of these rainstorm events were extracted by using ML method in conjunction with the Locally Linear Embedding algorithm, which shows a potential capability to predict the developmental trend of a heavy rainstorm before it occurs. Based on the method put forward in the current study, characteristic rainfall process models consistent with the local temporal and spatial distribution characteristics of rainstorms can be designed, which is important to understand the risks of the rainstorms and consequently helpful for the assessment of urban flood insurance, the scientific design of drainage systems and the forecasting and warning of urban waterlogging. © 2020 Elsevier B.V.
英文关键词Dynamic spatial-temporal distribution; Locally linear embedding method; Machine learning; Shenzhen; Short-duration rainstorm
学科领域Design; Embeddings; Flood insurance; Forecasting; Learning systems; Machine learning; Rain; Risk assessment; Thunderstorms; Dynamic characteristics; Dynamic spatial; Locally linear embedding; Locally linear embedding algorithms; Precipitation distribution; Shenzhen; Short durations; Temporal and spatial distribution; Spatial distribution; algorithm; climate modeling; drainage network; machine learning; precipitation assessment; rainfall; rainstorm; spatial distribution; spatiotemporal analysis; waterlogging; weather forecasting; China; Guangdong; Shenzhen
语种英语
scopus关键词Design; Embeddings; Flood insurance; Forecasting; Learning systems; Machine learning; Rain; Risk assessment; Thunderstorms; Dynamic characteristics; Dynamic spatial; Locally linear embedding; Locally linear embedding algorithms; Precipitation distribution; Shenzhen; Short durations; Temporal and spatial distribution; Spatial distribution; algorithm; climate modeling; drainage network; machine learning; precipitation assessment; rainfall; rainstorm; spatial distribution; spatiotemporal analysis; waterlogging; weather forecasting; China; Guangdong; Shenzhen
来源期刊Atmospheric Research
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/120443
作者单位School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, 519082, China; China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Shenzhen National Climate Observatory, Shenzhen, 518040, China; Hong Kong Observatory, Kowloon, Hong Kong 999077, China; Shenzhen Academy of Severe Storms Science, Shenzhen, 518057, China
推荐引用方式
GB/T 7714
Liu Y.-Y.,Li L.,Liu Y.-S.,et al. Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning[J],2020,237.
APA Liu Y.-Y.,Li L.,Liu Y.-S.,Chan P.W.,&Zhang W.-H..(2020).Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning.Atmospheric Research,237.
MLA Liu Y.-Y.,et al."Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning".Atmospheric Research 237(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu Y.-Y.]的文章
[Li L.]的文章
[Liu Y.-S.]的文章
百度学术
百度学术中相似的文章
[Liu Y.-Y.]的文章
[Li L.]的文章
[Liu Y.-S.]的文章
必应学术
必应学术中相似的文章
[Liu Y.-Y.]的文章
[Li L.]的文章
[Liu Y.-S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。