Climate Change Data Portal
DOI | 10.5194/tc-12-2689-2018 |
Multi-channel and multi-polarization radar measurements around the NEEM site | |
Li J.; González J.A.V.; Leuschen C.; Harish A.; Gogineni P.; Montagnat M.; Weikusat I.; Rodriguez-Morales F.; Paden J. | |
发表日期 | 2018 |
ISSN | 19940416 |
卷号 | 12期号:8 |
英文摘要 | Ice properties inferred from multi-polarization measurements, such as birefringence and crystal orientation fabric (COF), can provide insight into ice strain, viscosity, and ice flow. In 2008, the Center for Remote Sensing of Ice Sheets (CReSIS) used a ground-based VHF (very high frequency) radar to take multi-channel and multi-polarization measurements around the NEEM (North Greenland Eemian Ice Drilling) site. The system operated with 30MHz bandwidth at a center frequency of 150MHz. This paper describes the radar system, antenna configurations, data collection, and processing and analysis of this data set. Within the framework derived from uniaxial ice crystal model, we found that ice birefringence dominates the power variation patterns of co-polarization and cross-polarization measurements in the area of 100km2 around the ice core site. The phase shift between ordinary and extraordinary waves increases nonlinearly with depth. The ice optic axis lies in planes that are close to the vertical plane and perpendicular or parallel to the ice divide depending on depth. The ice optic axis has an average tilt angle of about 11.6° vertically, and its plane may rotate either clockwise or counterclockwise by about 10° across the 100km2 area, and at a specific location the plane may rotate slightly counterclockwise as depth increases. Comparisons between the radar observations, simulations, and ice core fabric data are in very good agreement. We calculated the effective colatitude at different depths by using azimuth and colatitude measurements of the c axis of ice crystals. We obtained an average effective c axis tilt angle of 9.6° from the vertical axis, very comparable to the average optic axis tilt angle estimated from radar polarization measurements. The comparisons give us confidence in applying this polarimetric radio echo sounding technique to infer profiles of ice fabric in locations where there are no ice core measurements. © Author(s) 2018. |
学科领域 | azimuth; birefringence; crystal structure; data set; echo sounding; ice crystal; polarization; radar; remote sensing; Arctic; Greenland |
语种 | 英语 |
scopus关键词 | azimuth; birefringence; crystal structure; data set; echo sounding; ice crystal; polarization; radar; remote sensing; Arctic; Greenland |
来源期刊 | Cryosphere
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/119083 |
作者单位 | Center for Remote Sensing of Ice Sheets, University of Kansas, Lawrence, KS 66045, United States; Department of Electrical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India; Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35487, United States; IGE, Université Grenoble Alpes, CNRS, IRD, G-INP, Grenoble, 38041, France; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 24, Bremerhaven, 27568, Germany |
推荐引用方式 GB/T 7714 | Li J.,González J.A.V.,Leuschen C.,et al. Multi-channel and multi-polarization radar measurements around the NEEM site[J],2018,12(8). |
APA | Li J..,González J.A.V..,Leuschen C..,Harish A..,Gogineni P..,...&Paden J..(2018).Multi-channel and multi-polarization radar measurements around the NEEM site.Cryosphere,12(8). |
MLA | Li J.,et al."Multi-channel and multi-polarization radar measurements around the NEEM site".Cryosphere 12.8(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。