Climate Change Data Portal
DOI | 10.5194/tc-13-79-2019 |
Arctic sea-ice-free season projected to extend into autumn | |
Lebrun M.; Vancoppenolle M.; Madec G.; Massonnet F. | |
发表日期 | 2019 |
ISSN | 19940416 |
EISSN | 13 |
起始页码 | 79 |
结束页码 | 96 |
卷号 | 13期号:1 |
英文摘要 | The recent Arctic sea ice reduction comes with an increase in the ice-free season duration, with comparable contributions of earlier ice retreat and later advance. CMIP5 models all project that the trend towards later advance should progressively exceed and ultimately double the trend towards earlier retreat, causing the ice-free season to shift into autumn. We show that such a shift is a basic feature of the thermodynamic response of seasonal ice to warming. The detailed analysis of an idealised thermodynamic ice-ocean model stresses the role of two seasonal amplifying feedbacks. The summer feedback generates a 1.6-day-later advance in response to a 1-day-earlier retreat. The underlying physics are the property of the upper ocean to absorb solar radiation more efficiently than it can release heat right before ice advance. The winter feedback is comparatively weak, prompting a 0.3-day-earlier retreat in response to a 1-day shift towards later advance. This is because a shorter growth season implies thinner ice, which subsequently melts away faster. However, the winter feedback is dampened by the relatively long ice growth period and by the inverse relationship between ice growth rate and thickness. At inter-annual timescales, the thermodynamic response of ice seasonality to warming is obscured by inter-annual variability. Nevertheless, in the long term, because all feedback mechanisms relate to basic and stable elements of the Arctic climate system, there is little inter-model uncertainty on the projected long-term shift into autumn of the ice-free season. © 2019. This work is distributed under the Creative Commons Attribution 4.0 License. |
学科领域 | autumn; CMIP; growth rate; ice retreat; ice thickness; sea ice; seasonality; solar radiation; thermodynamics; warming; Arctic |
语种 | 英语 |
scopus关键词 | autumn; CMIP; growth rate; ice retreat; ice thickness; sea ice; seasonality; solar radiation; thermodynamics; warming; Arctic |
来源期刊 | The Cryosphere
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/118951 |
作者单位 | Sorbonne Université, LOCEAN-IPSL, CNRS, IRD, MNHN, Paris, France; Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium; Earth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain |
推荐引用方式 GB/T 7714 | Lebrun M.,Vancoppenolle M.,Madec G.,et al. Arctic sea-ice-free season projected to extend into autumn[J],2019,13(1). |
APA | Lebrun M.,Vancoppenolle M.,Madec G.,&Massonnet F..(2019).Arctic sea-ice-free season projected to extend into autumn.The Cryosphere,13(1). |
MLA | Lebrun M.,et al."Arctic sea-ice-free season projected to extend into autumn".The Cryosphere 13.1(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。