Climate Change Data Portal
DOI | 10.5194/tc-13-2439-2019 |
Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method - First applications in periglacial environments | |
Mudler J.; Hördt A.; Przyklenk A.; Fiandaca G.; Kumar Maurya P.; Hauck C. | |
发表日期 | 2019 |
ISSN | 19940416 |
EISSN | 13 |
起始页码 | 2439 |
结束页码 | 2456 |
卷号 | 13期号:9 |
英文摘要 | The DC resistivity method is a common tool in periglacial research because it can delineate zones of large resistivities, which are often associated with frozen water. The interpretation can be ambiguous, however, because large resistivities may also have other causes, like solid dry rock. One possibility to reduce the ambiguity is to measure the frequency-dependent resistivity. At low frequencies (< 100 Hz) the corresponding method is called induced polarization, which has also been used in periglacial environments. For the detection and possibly quantification of water ice, a higher frequency range, between 100 Hz and 100 kHz, may be particularly interesting because in that range, the electrical properties of water ice exhibit a characteristic behaviour. In addition, the large frequencies allow a capacitive coupling of the electrodes, which may have logistical advantages. The capacitively coupled resistivity (CCR) method tries to combine these logistical advantages with the potential scientific benefit of reduced ambiguity. In this paper, we discuss CCR data obtained at two field sites with cryospheric influence: the Schilthorn massif in the Swiss Alps and the frozen Lake Prestvannet in the northern part of Norway. One objective is to add examples to the literature where the method is assessed in different conditions. Our results agree reasonably well with known subsurface structure: at the Prestvannet site, the transition from a frozen lake to the land is clearly visible in the inversion results, whereas at the Schilthorn site, the boundary between a snow cover and the bedrock below can be nicely delineated. In both cases, the electrical parameters are consistent with those expected from literature. The second objective is to discuss useful methodological advancements: first, we investigate the effect of capacitive sensor height above the surface and corroborate the assumption that it is negligible for highly resistive conditions. For the inversion of the data, we modified an existing 2-D inversion code originally developed for low-frequency induced polarization data by including a parametrization of electrical permittivity. The new inversion code allows the extraction of electrical parameters that may be directly compared with literature values, which was previously not possible. © Author(s) 2019. |
学科领域 | cryosphere; data set; induced polarization; numerical method; periglacial environment; permittivity; two-dimensional modeling; Bernese Alps; Central Alps; Norway; Schilthorn; Switzerland |
语种 | 英语 |
scopus关键词 | cryosphere; data set; induced polarization; numerical method; periglacial environment; permittivity; two-dimensional modeling; Bernese Alps; Central Alps; Norway; Schilthorn; Switzerland |
来源期刊 | The Cryosphere |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/118836 |
作者单位 | Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany; Department of Geoscience, Hydrogeophysics Group, Aarhus University, Aarhus, Denmark; Department of Geosciences, University of Fribourg, Fribourg, Switzerland |
推荐引用方式 GB/T 7714 | Mudler J.,Hördt A.,Przyklenk A.,et al. Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method - First applications in periglacial environments[J],2019,13(9). |
APA | Mudler J.,Hördt A.,Przyklenk A.,Fiandaca G.,Kumar Maurya P.,&Hauck C..(2019).Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method - First applications in periglacial environments.The Cryosphere,13(9). |
MLA | Mudler J.,et al."Two-dimensional inversion of wideband spectral data from the capacitively coupled resistivity method - First applications in periglacial environments".The Cryosphere 13.9(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。