CCPortal
DOI10.5194/tc-13-2887-2019
Wave energy attenuation in fields of colliding ice floes - Part 1: Discrete-element modelling of dissipation due to ice-water drag
Herman A.; Cheng S.; Shen H.H.
发表日期2019
ISSN19940416
EISSN13
起始页码2887
结束页码2900
卷号13期号:11
英文摘要

The energy of water waves propagating through sea ice is attenuated due to non-dissipative (scattering) and dissipative processes. The nature of those processes and their contribution to attenuation depends on wave characteristics and ice properties and is usually difficult (or impossible) to determine from limited observations available. Therefore, many aspects of relevant dissipation mechanisms remain poorly understood. In this work, a discrete-element model (DEM) is used to study one of those mechanisms: dissipation due to ice-water drag. The model consists of two coupled parts, a DEM simulating the surge motion and collisions of ice floes driven by waves and a wave module solving the wave energy transport equation with source terms computed based on phase-averaged DEM results. The wave energy attenuation is analysed analytically for a limiting case of a compact, horizontally confined ice cover. It is shown that the usage of a quadratic drag law leads to non-exponential attenuation of wave amplitude a with distance x, of the form a(x)=1/(ax+1), with the attenuation rate α linearly proportional to the drag coefficient. The dependence of α on wave frequency ω varies with the dispersion relation used. For the open-water (OW) dispersion relation, αĝ1/4ω4. For the mass loading dispersion relation, suitable for ice covers composed of small floes, the increase in α with ω is much faster than in the OW case, leading to very fast elimination of high-frequency components from the wave energy spectrum. For elastic-plate dispersion relation, suitable for large floes or continuous ice, αĝ1/4ωm within the high-frequency tail, with m close to 2.0-2.5; i.e. dissipation is much slower than in the OW case. The coupled DEM-wave model predicts the existence of two zones: a relatively narrow area of very strong attenuation close to the ice edge, with energetic floe collisions and therefore high instantaneous ice-water velocities, and an inner zone where ice floes are in permanent or semi-permanent contact with each other, with attenuation rates close to those analysed theoretically. Dissipation in the collisional zone increases with an increasing restitution coefficient of the ice and with decreasing floe size. In effect, two factors contribute to strong attenuation in fields of small ice floes: lower wave energy propagation speeds and higher relative ice-water velocities due to larger accelerations of floes with smaller mass and more collisions per unit surface area.

. © Author(s) 2019.
学科领域digital elevation model; modeling; sea ice; simulation; water wave; wave attenuation; wave energy; wave scattering; wave velocity
语种英语
scopus关键词digital elevation model; modeling; sea ice; simulation; water wave; wave attenuation; wave energy; wave scattering; wave velocity
来源期刊The Cryosphere
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/118811
作者单位Institute of Oceanography, University of Gdańsk, Gdańsk, Poland; Nansen Environmental and Remote Sensing Center, Bergen, Norway; Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, United States
推荐引用方式
GB/T 7714
Herman A.,Cheng S.,Shen H.H.. Wave energy attenuation in fields of colliding ice floes - Part 1: Discrete-element modelling of dissipation due to ice-water drag[J],2019,13(11).
APA Herman A.,Cheng S.,&Shen H.H..(2019).Wave energy attenuation in fields of colliding ice floes - Part 1: Discrete-element modelling of dissipation due to ice-water drag.The Cryosphere,13(11).
MLA Herman A.,et al."Wave energy attenuation in fields of colliding ice floes - Part 1: Discrete-element modelling of dissipation due to ice-water drag".The Cryosphere 13.11(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Herman A.]的文章
[Cheng S.]的文章
[Shen H.H.]的文章
百度学术
百度学术中相似的文章
[Herman A.]的文章
[Cheng S.]的文章
[Shen H.H.]的文章
必应学术
必应学术中相似的文章
[Herman A.]的文章
[Cheng S.]的文章
[Shen H.H.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。