Climate Change Data Portal
DOI | 10.5194/tc-13-3023-2019 |
Effect of prescribed sea surface conditions on the modern and future Antarctic surface climate simulated by the ARPEGE atmosphere general circulation model | |
Beaumet J.; Déqué M.; Krinner G.; Agosta C.; Alias A. | |
发表日期 | 2019 |
ISSN | 19940416 |
EISSN | 13 |
起始页码 | 3023 |
结束页码 | 3043 |
卷号 | 13期号:11 |
英文摘要 | Owing to increase in snowfall, the Antarctic Ice Sheet surface mass balance is expected to increase by the end of the current century. Assuming no associated response of ice dynamics, this will be a negative contribution to sea-level rise. However, the assessment of these changes using dynamical downscaling of coupled climate model projections still bears considerable uncertainties due to poorly represented high-southern-latitude atmospheric circulation and sea surface conditions (SSCs), that is sea surface temperature and sea ice concentration. This study evaluates the Antarctic surface climate simulated using a global high-resolution atmospheric model and assesses the effects on the simulated Antarctic surface climate of two different SSC data sets obtained from two coupled climate model projections. The two coupled models from which SSCs are taken, MIROC-ESM and NorESM1-M, simulate future Antarctic sea ice trends at the opposite ends of the CMIP5 RCP8.5 projection range. The atmospheric model ARPEGE is used with a stretched grid configuration in order to achieve an average horizontal resolution of 35 km over Antarctica. Over the 1981-2010 period, ARPEGE is driven by the SSCs from MIROC-ESM, NorESM1-M and CMIP5 historical runs and by observed SSCs. These three simulations are evaluated against the ERA-Interim reanalyses for atmospheric general circulation as well as the MAR regional climate model and in situ observations for surface climate. For the late 21st century, SSCs from the same coupled climate models forced by the RCP8.5 emission scenario are used both directly and bias-corrected with an anomaly method which consists in adding the future climate anomaly from coupled model projections to the observed SSCs with taking into account the quantile distribution of these anomalies. We evaluate the effects of driving the atmospheric model by the bias-corrected instead of the original SSCs. For the simulation using SSCs from NorESM1-M, no significantly different climate change signals over Antarctica as a whole are found when bias-corrected SSCs are used. For the simulation driven by MIROC-ESM SSCs, a significant additional increase in precipitation and in winter temperatures for the Antarctic Ice Sheet is obtained when using bias-corrected SSCs. For the range of Antarctic warming found (C 3 to C4 K), we confirm that snowfall increase will largely outweigh increases in melt and rainfall. Using the end members of sea ice trends from the CMIP5 RCP8.5 projections, the difference in warming obtained (~ 1 K) is much smaller than the spread of the CMIP5 Antarctic warming projections. This confirms that the errors in representing the Southern Hemisphere atmospheric circulation in climate models are also determinant for the diversity of their projected late 21st century Antarctic climate change. © 2019 Copernicus GmbH. All rights reserved. |
学科领域 | atmospheric circulation; atmospheric modeling; climate change; climate modeling; CMIP; downscaling; general circulation model; in situ measurement; mass balance; sea ice; sea level change; sea surface; sea surface temperature; twenty first century; uncertainty analysis; Antarctic Ice Sheet; Antarctica |
语种 | 英语 |
scopus关键词 | atmospheric circulation; atmospheric modeling; climate change; climate modeling; CMIP; downscaling; general circulation model; in situ measurement; mass balance; sea ice; sea level change; sea surface; sea surface temperature; twenty first century; uncertainty analysis; Antarctic Ice Sheet; Antarctica |
来源期刊 | The Cryosphere
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/118810 |
作者单位 | Univ. Grenoble Alpes, CNRS, IGE, Grenoble, 38000, France; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France; Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91198, France |
推荐引用方式 GB/T 7714 | Beaumet J.,Déqué M.,Krinner G.,et al. Effect of prescribed sea surface conditions on the modern and future Antarctic surface climate simulated by the ARPEGE atmosphere general circulation model[J],2019,13(11). |
APA | Beaumet J.,Déqué M.,Krinner G.,Agosta C.,&Alias A..(2019).Effect of prescribed sea surface conditions on the modern and future Antarctic surface climate simulated by the ARPEGE atmosphere general circulation model.The Cryosphere,13(11). |
MLA | Beaumet J.,et al."Effect of prescribed sea surface conditions on the modern and future Antarctic surface climate simulated by the ARPEGE atmosphere general circulation model".The Cryosphere 13.11(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。