Climate Change Data Portal
DOI | 10.1177/0309133319871941 |
Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India | |
van Dijk, Wout M.1; Densmore, Alexander L.2; Jackson, Christopher R.3; Mackay, Jonathan D.3; Joshi, Suneel K.4; Sinha, Rajiv4; Shekhar, Shashank5; Gupta, Sanjeev6 | |
发表日期 | 2019 |
ISSN | 0309-1333 |
EISSN | 1477-0296 |
英文摘要 | Unsustainable exploitation of groundwater in northwestern India has led to extreme but spatially variable depletion of the alluvial aquifer system in the region. Mitigation and management of groundwater resources require an understanding of the drivers behind the pattern and magnitude of groundwater depletion, but a regional perspective on these drivers has been lacking. The objectives of this study are to (1) understand the extent to which the observed pattern of groundwater level change can be explained by the drivers of precipitation, potential evapotranspiration, abstraction, and canal irrigation, and (2) understand how the impacts of these drivers may vary depending on the underlying geological heterogeneity of the system. We used a transfer function-noise (TFN) time series approach to quantify the effect of the various driver components in the period 1974-2010, based on predefined impulse response functions (theta). The dynamic response to abstraction, summarized by the zeroth moment of the response M-0, is spatially variable but is generally large across the proximal and middle parts of the study area, particularly where abstraction is high but alluvial aquifer bodies are less abundant. In contrast, the precipitation response is rapid and fairly uniform across the study area. At larger distances from the Himalayan front, observed groundwater level rise can be explained predominantly by canal irrigation. We conclude that the geological heterogeneity of the aquifer system, which is imposed by the geomorphic setting, affects the response of the aquifer system to the imposed drivers. This heterogeneity thus provides a useful framework that can guide mitigation efforts; for example, efforts to decrease abstraction rates should be focused on areas with thinner and less abundant aquifer bodies. |
WOS研究方向 | Physical Geography ; Geology |
来源期刊 | PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/102708 |
作者单位 | 1.Univ Utrecht, Fac Geosci, Utrecht, Netherlands; 2.Univ Durham, Dept Geog, Durham, England; 3.British Geol Survey, Environm Sci Ctr, Nottingham, England; 4.Indian Inst Technol Kanpur, Dept Earth Sci, Kanpur, Uttar Pradesh, India; 5.Univ Delhi, Dept Geol, Delhi, India; 6.Imperial Coll London, Dept Earth Sci & Engn, London, England |
推荐引用方式 GB/T 7714 | van Dijk, Wout M.,Densmore, Alexander L.,Jackson, Christopher R.,et al. Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India[J],2019. |
APA | van Dijk, Wout M..,Densmore, Alexander L..,Jackson, Christopher R..,Mackay, Jonathan D..,Joshi, Suneel K..,...&Gupta, Sanjeev.(2019).Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India.PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT. |
MLA | van Dijk, Wout M.,et al."Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India".PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT (2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。