Climate Change Data Portal
DOI | 10.1016/j.rse.2019.04.009 |
Subsurface temperature estimation from remote sensing data using a clustering-neural network method | |
Lu, Wenfang1; Su, Hua1; Yang, Xin1; Yan, Xiao-Hai2,3,4,5 | |
发表日期 | 2019 |
ISSN | 0034-4257 |
EISSN | 1879-0704 |
卷号 | 229页码:213-222 |
英文摘要 | The use of remote sensing observation to estimate subsurface oceanic variables, including subsurface temperature anomaly (STA), is essential for the study of ocean dynamics and climate change. Here we report a new method that combines a pre-clustering process and a neural network (NN) approach to determine the STA using ocean surface temperature, surface height, and surface wind observation data at the global scale. Gridded monthly Argo data were used in the training and validation procedures of the method. Results show that the pre-clustered NN method was better than the same method without clustering, while also outperforming a clustered linear regressor and the random forest method recently reported. The new method was tested over a wide range of time (all months from 2004 to 2010) and depth (down to 1900 m). Overall, our best estimation resulted in an overall root-mean-squared error of 0.41 degrees C and a determination coefficient (R-2) of 0.91 at the 50 m level for all months. The R-2 decreased to 0.51 at 300 m but was still better than the calculation without pre-clustering. This method can be expanded to estimate other key oceanic variables and provide new insights in understanding the climate system. |
WOS研究方向 | Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology |
来源期刊 | REMOTE SENSING OF ENVIRONMENT
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/100993 |
作者单位 | 1.Fuzhou Univ, Key Lab Spatial Data Min & Informat Sharing, Natl & Local Joint Engn Res Ctr Satellite Geospat, Minist Educ, Fuzhou, Fujian, Peoples R China; 2.Univ Delaware, Joint Inst Coastal Res & Management, Newark, DE 19716 USA; 3.Xiamen Univ, Xiamen, Fujian, Peoples R China; 4.Univ Delaware, Coll Earth Ocean & Environm, Ctr Remote Sensing, Newark, DE USA; 5.Xiamen Univ, Fujian Engn Res Ctr Ocean Remote Sensing Big Data, Xiamen, Fujian, Peoples R China |
推荐引用方式 GB/T 7714 | Lu, Wenfang,Su, Hua,Yang, Xin,et al. Subsurface temperature estimation from remote sensing data using a clustering-neural network method[J],2019,229:213-222. |
APA | Lu, Wenfang,Su, Hua,Yang, Xin,&Yan, Xiao-Hai.(2019).Subsurface temperature estimation from remote sensing data using a clustering-neural network method.REMOTE SENSING OF ENVIRONMENT,229,213-222. |
MLA | Lu, Wenfang,et al."Subsurface temperature estimation from remote sensing data using a clustering-neural network method".REMOTE SENSING OF ENVIRONMENT 229(2019):213-222. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。