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Foreword 

This document comprises a toolbox of seismic software developed and utilised in the project, 

presented in a form that other practitioners can utilise and tailor to their own specific needs. 

 

Acknowledgements 

The research team comprised scientists from the British Geological Survey (BGS), University of 

Edinburgh (UoE) and the National Oceanography Centre (NOC).   

 

Dr G Williams (BGS) 

Dr J White (BGS) 

Dr A Chadwick (BGS) 

Dr G Papageorgiou (UoE) 

Dr M Chapman (UoE) 

Dr I Falcon-Suarez (NOC) 

Dr A Best (NOC) 

 

Editorial assistance  

Dr M. Akhurst (BGS) 

Contents 

Foreword ........................................................................................................................................ 1 

Acknowledgements ........................................................................................................................ 1 

Contents ......................................................................................................................................... 1 

Executive Summary ...................................................................................................................... 3 

1 Introduction ............................................................................................................................ 4 

1.1 Installing the DiSECCS Seismic Unix toolbox .............................................................. 4 

2 Spectral decomposition using the Wigner-Ville transform ................................................ 5 

2.1 Background ..................................................................................................................... 5 

2.2 Theory ............................................................................................................................. 5 

2.3 Algorithm ....................................................................................................................... 6 

2.4 Implementation ............................................................................................................... 6 

2.5 Example usage ................................................................................................................ 6 

2.6 References ...................................................................................................................... 8 

3 Estimation of attenuation using log spectral ratio and peak frequency shift ................... 9 

3.1 Background ..................................................................................................................... 9 

3.2 Theory ............................................................................................................................. 9 



OR/17/013: Version 3.0  Last modified: 2018/01/31 13:48 

 2 

 

3.3 Algorithm 1: log spectral ratio ....................................................................................... 9 

3.4 Algorithm 2: peak frequency shift ................................................................................ 10 

3.5 Implementation ............................................................................................................. 10 

3.6 Example usage .............................................................................................................. 11 

3.7 References .................................................................................................................... 19 

4 Fracture properties from seismic coda analysis ................................................................ 20 

4.1 Background ................................................................................................................... 20 

4.2 Theory ........................................................................................................................... 20 

4.3 Algorithm ..................................................................................................................... 21 

4.4 Implementation ............................................................................................................. 21 

4.5 Example usage .............................................................................................................. 21 

4.6 References .................................................................................................................... 21 

5 Spectral inversion ................................................................................................................. 22 

5.1 Background ................................................................................................................... 22 

5.2 Theory ........................................................................................................................... 22 

5.3 Algorithm ..................................................................................................................... 22 

5.4 Implementation ............................................................................................................. 22 

5.5 Example usage .............................................................................................................. 23 

5.6 References .................................................................................................................... 24 

6 Rock Physics Models ............................................................................................................ 25 

6.1 Background ................................................................................................................... 25 

6.2 Implementation ............................................................................................................. 25 

6.3 Input parameters ........................................................................................................... 25 

6.4 Determining effective fluid modulus in a cracked porous medium ............................. 26 

6.5 The effect of capillary pressure on the effective fluid modulus ................................... 27 

6.6 The effective timescale parameter ................................................................................ 29 

6.7 Model 1 ......................................................................................................................... 30 

6.8 Model 2 ......................................................................................................................... 32 

6.9 References .................................................................................................................... 34 

7 Rock physics laboratory measurements ............................................................................ 35 

7.1 Background ................................................................................................................... 35 

7.2 Methodology ................................................................................................................. 35 

7.3 Results .......................................................................................................................... 35 

7.4 References .................................................................................................................... 35 

 

  



OR/17/013: Version 3.0  Last modified: 2018/01/31 13:48 

 3 

 

Executive Summary 

The DiSECCS project (Diagnostic Seismic Toolbox for Efficient Control of CO2 Storage) has 

developed seismic monitoring tools and methodologies to identify and characterise injection-

induced changes, whether of fluid saturation or pressure, in storage reservoirs.  

This DiSECCS deliverable comprises a toolbox of seismic software developed and utilised in the 

project. The tools include software for the measurement and characterisation of thin CO2 layers by 

spectral and attenuation analysis, fracture characterisation via wavelet coda analysis, novel rock 

physics algorithms and a summary of new laboratory analyses. 

  

Full copies of the software codes for practitioners are available to download online. 

 

Background information and further results from DiSECCS can be found on the project website 

https://www.bgs.ac.uk/diseccs/ 

 

  

https://www.bgs.ac.uk/diseccs/
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1 Introduction 

The DiSECCS seismic analysis toolbox comprises a series of codes which implement various 

algorithms for analysing post-stack seismic data acquired as part of a geological carbon 

sequestration monitoring programme. The tools focus on determining the thickness, saturation 

distribution and physical properties of CO2 layers imaged on seismic data and are described in 

detail within this document. A number of new rock physics models have also been developed as 

part of the DiSECCS project and these are included in the toolbox as a series of Mathematica 

notebooks.  

 

1.1 INSTALLING THE DISECCS SEISMIC UNIX TOOLBOX 

 

To use the spectral decomposition and Q estimation codes included in the toolbox, the Centre for 

Wave Phenomena Seismic Unix package (CWPSU) from Colorado School of Mines must also be 

installed. Seismic Unix can be downloaded from http://www.cwp.mines.edu/cwpcodes/ and 

compiled on any UNIX-like operating system with working C and FORTRAN-90 compilers. 

Seismic Unix can also be installed under CYGWIN on a windows based system. To install the 

codes the user must first set two environment variables pointing to the top-level directory(s) 

containing the Seismic Unix distribution and DiSECCS toolkit (Box 1.1). 

 

 
 

Box 1.1 Setting the environmental variables. 

 

The codes can then be built by modifying $DSUROOT/src/Makefile.config and running make at 

the top level of the source tree. 

  

Using the BASH shell: 

export CWPROOT=path_to_seismic_unix_install_dir 

export DSUROOT=path_to_diseccs_seismic_unix_install_dir 

Using the C shell: 

setenv CWPROOT path_to_seismic_unix_install_dir 

setenv DSUROOT path_to_diseccs_seismic_unix_install_dir 

http://www.cwp.mines.edu/cwpcodes/
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2 Spectral decomposition using the Wigner-Ville 

transform 

2.1 BACKGROUND 

 

A key property of a thin (a few metres thick) layer of CO2, migrating in a storage reservoir, is its 

temporal thickness, which can be combined with layer velocity to obtain the true layer thickness. 

If the layer lies beneath the limit of seismic resolution, its temporal thickness cannot be measured 

directly. Fortunately, tuning effects from such a thin layer produce amplitude and frequency 

modulation which are diagnostic of temporal thickness. The frequency signature is particularly 

useful in this respect because it is independent of the acoustic impedance contrasts at the layer 

interfaces. In order to extract frequency (spectral) information from the reflections associated with 

individual layers of CO2, it is necessary to analyse narrow travel-time windows (e.g. 25 ms or less 

in the Sleipner plume). Conventional linear time-frequency analysis techniques such as the 

Windowed Fourier Transform suffer from resolution problems - a narrow analysis window 

localizes the spectrum in time but provides poor frequency resolution, whereas a broader window 

loses temporal accuracy. The Wigner-Ville Distribution (Wigner 1932; Ville 1948) can 

potentially overcome some of the limitations inherent in these techniques. The improved 

resolution offered by the Wigner transform makes it particularly suitable for determining the 

temporal thickness of individual layers which can only be satisfactorily isolated using a short time 

window. 

 

2.2 THEORY 

 

The Wigner-Ville Distribution (WVD) function is calculated by computing the power spectrum of 

a signal (the Fourier transform of the wavelet auto-correlation function) and removing the 

integration over time (Equation 1). In effect the WVD is constructed by computing the auto-

correlation over all possible lags at each time sample (the local auto-correlation function) and 

transforming into Fourier space: 

 

  
Where Wx

 
is the Wigner-Ville distribution of a function x, t is time, τ the lag, ν the frequency and 

* represents complex conjugation. 

 

The result is a quadratic function. As a consequence of this, discrete events in a time series will 

produce cross-terms in the time-frequency distribution. The cross-terms can be reduced by 

smoothing with an appropriate filter kernel along the time g(x-t) and frequency h(τ) axes 

(Equation 2) to give the Smoothed Pseudo Wigner-Ville Distribution (SPWVD): 
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Smoothing leads to reduced resolution in both the time and frequency planes, forcing a trade-off 

between resolution and interference effects. 

 

2.3 ALGORITHM 

 

1. Sequentially read the seismic trace data from a CWPSU format file and take the Hilbert 

transform to form the analytic (complex) trace. 

2. Loop over the time dimension and form the local autocorrelation of the analytic trace at 

each time sample. 

3. Apply a smoothing kernel to the local autocorrelation function to attenuate cross-terms. 

4. Transform the smoothed local autocorrelation function for each time sample into the 

frequency domain using a Fourier transform. 

5. Store the resulting frequency distribution at each time sample in a time-frequency matrix. 

6. Write the time-frequency matrix to a CWPSU format file. 

 

2.4 IMPLEMENTATION 

 

The spectral decomposition algorithm(s) described above have been implemented in ANSI C as a 

plug-in to the freely available Seismic Unix seismic data processing toolkit 

(http://www.cwp.mines.edu/cwpcodes/).  

 

The following codes are included in the specdecomp directory of the DiSECCS toolbox. In each 

case the input / output data comprises seismic trace(s) in CWPSU format. 

 

1. dsuwvtfd1: implements the unsmoothed Wigner-Ville transform for a single trace. Output 

is a time-frequency gather. 

2. dsuwvtfd2: implements the unsmoothed Wigner-Ville transform for a series of seismic 

traces. Output is an iso-frequency seismic section. 

3. dsupwvtfd1: implements the Wigner-Ville transform smoothed along the time axis for a 

single trace. Output is a time-frequency gather. 

4. dsupwvtfd2: implements the Wigner-Ville transform smoothed along the time axis for a 

series of seismic traces. Output is an iso-frequency seismic section. 

5. dsuspwvtfd1: implements the Wigner-Ville transform smoothed along the time and 

frequency axes for a single trace. Output is a time-frequency gather. 

6. dsuspwvtfd2: implements the Wigner-Ville transform smoothed along the time and 

frequency axes for a series of seismic traces. Output is an iso-frequency seismic section. 

The BASH shell scripts testSpecDecomp1d.sh and testSpecDecomp2d.sh found in the test 

directory demonstrates the use of these codes. 

 

2.5 EXAMPLE USAGE 

 

Although less popular than the various linear transforms, the SPWVD has been applied to the 

spectral decomposition of both active and passive seismic signals (Li & Zheng 2008; Wu & Liu 

2006; Prieto et al. 2005). Williams & Chadwick (2012) and White et al. (2013) have successfully 

used the technique to estimate layer thickness in the Sleipner CO2 plume, by mapping the tuning 

peak in a short time window using time-lapse 3D seismic data ( 

Figure 2.1). 

http://www.cwp.mines.edu/cwpcodes/
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Figure 2.1 Tuning at the southern end of a CO2-filled ridge beneath the topseal. a) Map view (looking 

north) of the top of the Utsira reservoir, showing the outer extents of the topmost CO2 layer in 2006 (black 

line) and the line of cross-section.  b) Discrete frequency slices from the 3D data on a west–east cross-

section through the north-trending ridge of CO2 (computed using the SPWVD with a sliding 24 point 

Hanning window). Low frequency tuning (~40Hz) occurs along the ridge crest where CO2 is thickest, with 

higher frequency tuning (~70 – 80Hz) down the ridge flanks where the CO2 becomes progressively thinner. 

c) Tuning curves showing the relationship between frequency and two-way temporal thickness. 

 

A novel use of the SPWVD is presented by White et al. (2015), who discriminated between 

pressure changes and fluid saturation changes (associated with the CO2 plume) in the Tubåen 

storage reservoir at Snøhvit on the basis of ‘affected layer’ thickness. The CO2 plume reflectivity 

(Figure 2.2) is interpreted to come from thin layers of CO2 tuning at higher frequencies (>25 Hz). 

Pressure-induced reflectivity is more laterally extensive and characterised by changes in seismic 

properties which affect the full reservoir thickness with tuning at lower frequencies (<25 Hz). 
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Figure 2.2. Maps of time-lapse changes in the Tubåen storage reservoir at Snøhvit. a) peak tuning 

frequencies  b) tuning frequencies below 25 Hz c) tuning frequencies above 25 Hz. White circle marks CO2 

injection point, black polygons denote faults. 
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3 Estimation of attenuation using log spectral ratio and 

peak frequency shift 

 

3.1 BACKGROUND 

 

A key step towards quantifying and understanding the migration of CO2 in storage reservoirs is to 

determine the distribution of fluid saturation in the CO2 layers. This is challenging. When a 

seismic wave passes through a porous medium it suffers a frequency-dependent attenuation due to 

the energy loss associated with kinetic interactions of the different fluids (usually water and CO2) 

in the pore space. Measurement of the quality factor Q (inverse of the attenuation factor) can 

provide insights into fluid saturations within the pore-space. 

 

3.2 THEORY 

 

The amplitude spectrum of a wave propagating in an elastic half-space is given by: 

 

 
 

Where A(f,t) is the amplitude spectrum at time t, A(f) is the amplitude spectrum at time t0 (the 

reference spectrum), f is the frequency and Q the Quality factor. Given the travel time (t) it is 

possible to calculate Q (and hence attenuation) from the spectral variation between two time 

windows.  

 

3.3 ALGORITHM 1: LOG SPECTRAL RATIO 

 

The most common method is to take the logarithms of the amplitude spectra at two time windows, 

t1 and t2, and fit a linear regression to a plot of the log spectral ratio (LSR) as a function of 

frequency (Equation 4). The slope (p) of the regression fit is a function of Q and can be used to 

estimate attenuation using Equation 5.  

 

 

 
1. Sequentially read the seismic trace data from a CWPSU format file.  

2. Window the trace data about the first travel time pick. 

3. Form the amplitude spectrum of the windowed data using a Fourier transform. 
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4. Window the trace data about the second travel time pick. 

5. Form the amplitude spectrum of the windowed data using a Fourier transform. 

6. Compute the logarithm of the ratio of spectra 1 and 2. 

7. Fit a linear function of the form y=pf+T to a selected portion of the frequency spectrum 

8. Compute the intercept (T) and gradient (p) of the linear regression. The intercept (T) 

represents the transmission loss, whilst the gradient (p) can be used to calculate Q from 

Equation 5. 

 

3.4 ALGORITHM 2: PEAK FREQUENCY SHIFT 

 

An alternative technique uses the relationship between Q and the shift in peak frequency of the 

source wavelet as it propagates through the earth. Zhang & Ulrychz (2002) derived an expression 

for Q by assuming that the amplitude spectrum of the initial source wavelet is approximated by a 

Ricker wavelet. If the peak frequencies at times t1 and t2 are fp1 and fp2 respectively, then it is 

possible to calculate Q from:  

 

 
 

Where the dominant frequency (fm) is given by: 

 

 
 

1. Sequentially read the seismic trace data from a CWPSU format file Window trace data 

about the first travel time pick. 

2. Form the amplitude spectrum of the windowed data using a Fourier transform. 

3. Compute the peak frequency of the windowed amplitude spectrum. 

4. Window trace data about the second travel time pick. 

5. Form the amplitude spectrum of the windowed data using a Fourier transform. 

6. Compute the peak frequency of the windowed amplitude spectrum. 

7. Compute the dominant frequency using Equation 6b. 

8. Calculate Q using the shift in peak frequency between the two windowed amplitude 

spectra according to Equation 6a. 

 

3.5 IMPLEMENTATION 

 

The Q estimation algorithms described above have been implemented in ANSI C as a plug-in to 

the freely available Seismic Unix seismic data processing toolkit 

(http://www.cwp.mines.edu/cwpcodes/). The following codes are included in the qest directory of 
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http://www.cwp.mines.edu/cwpcodes/
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the DiSECCS toolbox. In each case the input / output data comprises seismic trace(s) in CWPSU 

format. 

 

1. dsusynqtrace: generates a synthetic seismic trace of known Q on which to test Q 

estimation algorithms. 

2. dsuqest: calculates Q using both the log spectral ratio and peak frequency shift methods. 

The BASH shell script testQSyn.sh found in the test directory demonstrates the use of these codes. 

 

3.6 EXAMPLE USAGE 

3.6.1 Synthetic data examples 

A synthetic seismic trace comprising two reflections of opposite polarity (Figure 3.1), has a 

temporal separation of 1 second two-way travel time between the reflection events. The 

reflectivity spikes have been convolved with a minimum phase wavelet with a dominant 

frequency of 35 Hz. The resulting stationary seismic trace is shown as a blue curve (Figure 3.1), 

while the red trace shows the same reflectivity signature, subject to attenuation at a constant Q of 

60.  

 

 

Figure 3.1. Stationary seismic trace (blue curve) calculated by convolving two reflectivity spikes of 

constant magnitude but opposite polarity with a minimum phase wavelet of dominant frequency 35 Hz. The 

red curve shows the same reflectivity series subject to attenuation at a constant Q of 60. 

 

Amplitude spectra computed for a time window of 0.2 seconds about the upper and lower 

reflections are shown in Figure 3.2, with a plot of the log10 of the ratio of both spectra in Figure 

3.3. A linear regression (red line) has been fitted to the frequency range 0-70 Hz (Figure 3.3). The 

slope of this line can be used to compute Q (Equation 5), giving a value of 59.68 for this synthetic 

noise free example. The peak frequency shift method also predicts the correct Q of 60 for this 

ideal synthetic case. 
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Figure 3.2. Amplitude spectra computed by taking the Fourier transform of a time window of 0.2 

seconds about the upper (blue curve) and lower (red curve) reflections in Figure 3.1. 

 

 

Figure 3.3. Log10 of the ratio between the two amplitude spectra shown in Figure . A linear 

regression (red line) has been fitted to the frequency range 0-70 Hz. The slope of this line can be 

used to compute Q using Equation 5. 

 

Both Q estimation techniques are highly sensitive to random noise however (Figure 3.4). It is 

clear that stable estimates of Q require high signal-to-noise ratios (SNR), which means that 
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application to a real dataset will require careful selection of appropriate time windows to isolate 

high signal areas in the data. 

 

 

Figure 3.4. The effect of uncorrelated Gaussian white additive noise on Q estimation stability. 

Stable estimates of Q require high signal-to-noise ratios in order to form stable spectra for 

analysis.  
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3.6.2 Real data example 

 

In order to demonstrate the workflow for Q estimation from stacked seismic data, a single inline 

from the 1999 Sleipner repeat seismic survey was analysed using a combination of the techniques 

described above. The seismic section (Figure 3.5) shows rather noisy traces, with the brightest 

reflections occurring in the CO2 plume between traces 200 and 300. Scattered high amplitude 

reflections between 0.6 and .0.8 s travel time correspond to methane accumulations in the 

caprock. 

 

Q analysis of the post-stack Sleipner data proved particularly challenging and was complicated by 

a number of factors: 

 

1. Wavelet interference. 

2. Energy from reflection multiples contaminating the reference spectra used to calculate Q. 

3. Shallow gas accumulations above the reservoir, which cause signal scattering and 

attenuation in part of the data. 

4. Time-dependent amplitude recovery applied during processing. 

5. Deconvolution (spectral whitening) applied during processing. 

6. Low SNR. 

The SNR for each trace is plotted below the seismic section (Figure 3.5). The signal power was 

computed from the zero lag of the cross-correlation between neighbouring traces, while noise 

power was estimated from the zero lag of the average auto-correlation of the two traces, minus the 

signal estimate. This technique assumes that the signal component is the same between adjacent 

traces and the noise component is different and random. The mean SNR for the entire seismic line 

is around 12, with higher values approaching 30 in the vicinity of the CO2 plume. Synthetic tests 

suggest that the data are not suitable for robust Q estimation (Figure 3.4), although it might be 

possible to achieve a meaningful measure of attenuation by carefully selecting suitable traces for 

analysis. 

 

For this example, Q was estimated from the final stacked and migrated seismic data using 

frequency spectra extracted in narrow time windows about a reflection from close to the top of the 

Utsira Sand reservoir (Figure 3.5) and about a high amplitude regional reflector some distance 

below the Utsira reservoir (Figure 3.5). A narrow time window was essential for two reasons: 

 

1. The low Signal-to-Noise Ratio (SNR) and lack of reflectivity at reservoir level means 

that reliable Q estimates require careful selection of appropriate time windows to 

isolate high signal areas in the data. 

 

2. The CO2 is trapped beneath a low permeability mudstone close to the top of the 

reservoir, so spectra used for Q estimation need to be selected from a short time 

window about this reflection. 

To this end, the SPWVD time-frequency distribution described above was used to calculate 

frequency spectra. Q values were then calculated for traces 30, 273 and 480 (Figure 3.5) selected 

on the basis of SNR and observed reflection strength (Figures 3.6 to 3.8).  
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Figure 3.5. Seismic inline from the 1999 Sleipner monitor survey, showing the reflective CO2 

plume in the central part of the section. One reflector close to the top of the Utsira Sand (red line) 

and one some distance below the Utsira Sand (blue) were used to estimate Q with analysed traces 

shown as red wiggle traces. Lower panel shows a signal-to-noise estimate computed on a trace-

by-trace basis. The mean signal-to-noise ratio is around 12. 
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Figure 3.6. Q analysis of Trace 30 on the seismic section in Figure 3.5, outside the CO2 plume. 

(a) The extracted seismic trace. (b) Time-frequency decomposition using the SPWVD. (c) 

Smoothed frequency spectra extracted from the data. (d) Log spectral ratio plot showing the 

straight line fit used to calculate Q. Red and blue stippled lines in (a), (b) and (c) show the time 

picks used in the Q analysis. 
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Figure 3.7. Q analysis of Trace 273 on the seismic section in Figure 3.5, located within the CO2 

plume. (a) The extracted seismic trace. (b) Time-frequency decomposition using the SPWVD. (c) 

Smoothed frequency spectra extracted from the data. (d) Log spectral ratio plot showing the 

straight line fit used to calculate Q. Red and blue stippled lines in (a), (b)and (c) show the time 

picks used in the Q analysis. 



OR/17/013: Version 3.0  Last modified: 2018/01/31 13:48 

 18 

 

 

 

Figure 3.8. Q analysis of Trace 480 on the seismic section in Figure 3.5, from outside the CO2 

plume. (a) The extracted seismic trace. (b) Time-frequency decomposition using the SPWVD. (c) 

Smoothed frequency spectra extracted from the data. (d) Log spectral ratio plot showing the 

straight line fit used to calculate Q. Red and blue stippled lines in (a), (b) and (c) show the time 

picks used in the Q analysis. 

 

 

 

Calculated Q values (Table 3.1) can be compared with laboratory measurements on an Utsira 

Sand core sample made by Falcon-Suarez et al. (2018) as part of DISECCS. They found that the 

P-wave attenuation (1/QP) in partially saturated rock increased from 0.02 - 0.03 (Q = 50 - 32) in 

brine saturated rock to around 0.06 - 0.08 (Q = 17 - 12.5). New rock physics relationships 

proposed by Falcon-Suarez et al. (2018) indicate that at higher CO2 saturations (80% and above) 

Q values would be in the range 20-30. There is therefore a degree of agreement on these figures. 

Traces 30 and 480, through the brine-filled reservoir, have high Q values, similar to the laboratory 

measurements. Trace 273, through the CO2 plume has lower Q values, but consistent with 

generally quite high CO2 saturations.  
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Trace QLSR QPFS QMEAN 1/QMEAN 

30 56.97 66.00 61.45 0.0163 
273 19.26 28.00 23.63 0.0423 
480 51.35 55.00 53.18 0.0188 

Table 3.1. Results of Q analysis on selected traces extracted from the seismic line in Figure . LSR 

log spectral ratio; PFS  peak frequency shift. 

 

Automated analysis of the entire seismic section proved less successful, with many traces giving 

highly unstable Q estimates. It might be possible to improve the results by re-processing selected 

traces using a scheme designed to more accurately preserve amplitude information inherent in the 

signal. Noise could potentially be attenuated by forming “super-gathers” of adjacent common 

midpoint bins. 

 

3.7 REFERENCES 

 

Falcon-Suarez, I., Papageorgiou, G., Chadwick, A., North, L., Best, A. & Chapman, M.  2018. 

CO2-brine flow-through on an Utsira Sand core sample: experimental and modelling. Implications 

for the Sleipner storage field. International Journal of Greenhouse Gas Control, 68 (2018), 236-

246. 

 

Zhang, C. & Ulrychz, T.J., 2002. Estimation of quality factors from CMP records. Geophysics 

1542–1547. 
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4 Fracture properties from seismic coda analysis 

4.1 BACKGROUND 

 

The occurrence and characteristics of fracturing in reservoirs and overburdens is a key storage 

performance issue. Multi-component seismic data are typically used to characterise structural 

anisotropy, but a logistically simpler approach involves the use of conventional 3D or multi-

azimuth 2D datasets. As a seismic wave propagates through the fractured medium the wavelet is 

lengthened by a reverberating or ringing ‘coda’ or tail. Coda development is most pronounced 

where the direction of propagation is parallel to the fracture system. So in principle the fracture 

direction can be determined by analysing the length of the ringing ‘coda’ for seismic lines 

acquired along different azimuths. 

 

4.2 THEORY 

 

Willis et al. (2006) described an algorithm to extract fracture distribution and orientation from 

scattered seismic coda, where the fracture spacing is of a comparable dimension to the wavelength 

of the seismic wavelet. Their algorithm was based on synthetic seismic models of a simple 

reservoir comprising five layers of homogenous isotropic elastic media. A series of anisotropic 

vertical fractures were introduced in the third layer of the model and assigned an elastic stiffness 

of 8 x 10
8
 Pa m

-1
, to represent gas-filled fractures. Synthetic shot records were generated for a 

series of models with fractures spaced at 10, 25, 35, 50 and 100 metres.  

 

It was found that reflections beneath the fracture zone exhibited a ringing coda caused by 

reverberations in the fractured zone. However a shot record acquired normal to the fracture 

direction had little coherent energy below the top of the fractured zone, whereas shot records 

acquired parallel to the fractures showed coherent reflections from below the top fractured zone 

reflection. Consequently, the strike of the fracture zone could be identified using stacked NMO-

corrected azimuthal gathers. 

  

In order to apply coda analysis to real datasets, the authors computed a transfer function by 

deconvolving the autocorrelation function computed in a window above the fractured zone from 

the autocorrelation function computed in a window below the fractured zone, using the Wiener-

Levinson algorithm. A clean spike or pulsed transfer function indicates no scattering, whereas a 

long, ringing, transfer function is indicative of scattering within the zone between the two analysis 

windows. The transfer functions from traces stacked in the direction parallel to fractures exhibited 

more ringing than those in the direction perpendicular to fractures, albeit with transfer functions 

showing very little change in shape until they were within 10° of the fracture strike direction on 

the synthetic test examples.  

 

Willis et al. (2006) defined a scattering index (SI) to quantify the amount of ringing in the transfer 

function (ti) of the form: 

 

 
 

Where i is the time lag, n is an exponent equal to unity and m represents the lag at which the 

energy of the transfer function is insignificant.  

𝑆𝐼 =  |𝑡𝑖|
𝑚
𝑖=0 𝑖𝑛                                                                                                Equation 7 
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The scattering index is largest in the fracture-parallel direction. The program dsucoda computes 

this scattering index for seismic traces in CWPSU format. 

 

4.3 ALGORITHM 

 

1. Read the CWPSU formatted seismic trace data and window about two time picks above 

and below the zone of interest. 

2. Compute the autocorrelations of the windowed trace data. 

3. Form the transfer function using the Wiener-Levinson deconvolution algorithm (Levinson 

recursion to solve the Toeplitz matrix). 

4. Output the resulting transfer function in CWPSU trace format. 

5. Compute the scattering index using Equation 7. 

 

4.4 IMPLEMENTATION 

 

The scattering index described above can be computed using dsucoda, which is contained in the 

coda directory of the DiSECCS toolbox. It has been implemented in ANSI C as a plug-in to the 

freely available Seismic Unix seismic data processing toolkit 

(http://www.cwp.mines.edu/cwpcodes/). 

 

4.5 EXAMPLE USAGE 

 

Willis et al. (2006) presented an example of coda analysis applied to a 3D seismic survey acquired 

over a fractured carbonate hydrocarbon reservoir (the Emilio field) in the central part of the 

Adriatic Sea, near the eastern coast of Italy. This technique clearly has the potential to enhance 

seismic monitoring of fractured CO2 storage reservoirs. 

 

4.6 REFERENCES 

 

Willis, M.E., D.R. Burns, R. Rao, B. Minsley, M.N. Toksöz & L.Vetri. 2006. Spatial Orientation 

and Distribution of Reservoir Fractures from Scattered Seismic Energy. Geophysics 71 (5): O43. 

doi:10.1190/1.2235977. 

 

 

  

http://www.cwp.mines.edu/cwpcodes/
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5 Spectral inversion 

5.1 BACKGROUND 

 

Spectral inversion is a technique that uses spectral decomposition to improve characterisation of 

layers below the seismic tuning thickness. Absolute temporal layer thickness can be determined 

together with the reflection coefficients of the upper and lower layer interfaces which can be used 

to constrain layer velocity. 

 

5.2 THEORY 

 

The spectral inversion technique contained in the DiSECCS toolbox uses an inversion algorithm 

formulated in the frequency domain. The method for two reflections is based on the constant 

periodicity of the amplitude spectrum for a single layer of thickness T. The cost function is 

defined by Puryear & Castagna (2008) as: 

 

 
 

It is evaluated across a range of frequencies. 𝐺(𝑓) is the magnitude of the amplitude spectrum and 

𝑘 = 𝑟𝑒
2 − 𝑟𝑜

2 where 𝑟𝑜   and 𝑟𝑒 are the odd and even components of the reflection coefficient pair.  

Finding the global minimum of the cost function by scanning a reasonable model space in T and k 

gives the desired solution for T and k. The remaining parameters are then calculated from: 

 

 
 

And 

 

 

5.3 ALGORITHM 

 

1. Read in the seismic trace and source wavelet and transform both trace and wavelet into the 

frequency domain. 

2. Calculate the normalised amplitude of the input trace at discrete frequency values. 

3. Calculate the gradient of the amplitude distribution in the frequency domain. 

4. Estimate the cost function across a suitable frequency range to determine the temporal 

thickness of the layer, T, and k. 

5. Loop through the selected frequency range and derive the odd and even components of the 

reflection amplitude pair. 

6. Output results. 

5.4 IMPLEMENTATION 

 

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐺(𝑓)
𝑑𝐺(𝑓)

𝑑𝑓
+ 2𝜋𝑇𝑘 sin(2𝜋𝑓𝑇)                                                      Equation 8 

𝑟𝑜 =  
𝐺(𝑓)2

4
− 𝑘(cos(𝜋𝑓𝑇) )2                                                                                    Equation 9 

𝑟𝑒 =  𝑘 − 𝑟𝑜
2                                                                                                            Equation 10 
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The spectral inversion algorithm described above has been implemented in the ANSI C code 

dsuspecinv2, which is included in the specdecomp directory of the DiSECCS toolbox. This is a 

plug-in to the freely available Seismic Unix seismic data processing toolkit 

(http://www.cwp.mines.edu/cwpcodes/) and the input data comprise seismic trace(s) in CWPSU 

format. Output from the code consists of two text files containing the calculated reflectivity 

response and the evaluated cost function. Note that dsuspecinv2 uses the Fast Fourier Transform 

package FFTW3 which can be downloaded from www.fftw.org. 

 

5.5 EXAMPLE USAGE 

5.5.1 Synthetic example 

 

A simple synthetic example of a seismic trace containing two reflections is shown in Figure 5.1. 

The top reflection coefficient is -0.2, the bottom reflection coefficient is 0.1 and the layer spacing 

is 8 milliseconds. The reflectivity series has been convolved with a Ricker wavelet with a peak 

frequency of 30 Hz. The cost function (Figure 5.2) clearly shows a global minimum at k=-0.02 

and T=0.08 s. 

 

 
 

Figure 5.1.  Top (red line) and base (blue line) reflections and the composite seismic trace 

resulting from the superposition of the two reflections (black line). 

http://www.cwp.mines.edu/cwpcodes/
http://www.fftw.org/
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Figure 5.2. Cost function in k and T space. The cost function shows a global minimum at k=-0.02 

and T=0.08 s. 

 

5.5.2 Real example 

 

The technique has been applied to a thin CO2 layer within the Sleipner plume with mixed results 

(White et al., 2013).  The lack of resolution for real data is a consequence of the difficulty in 

isolating a clean wavelet from a layer reflection amplitude pair which does not suffer interference 

effects from overlying and underlying reflectivity. 

 

5.6 REFERENCES 

 

Puryear, C.I. & Castagna, J.P. 2008. Layer-thickness determination and stratigraphic 

interpretation using spectral inversion: Theory and application. Geophysics 73 (2), R37-R48. 

 

White, J.C.,Williams, G.A. & Chadwick, R.A. 2013. Thin Layer Detectability in a Growing CO2 

Plume: testing the Limits of Time-lapse Seismic Resolution. Energy Procedia 37, 4356–4365. 

doi:10.1016/j.egypro.2013.06.338 
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6 Rock Physics Models 

6.1 BACKGROUND 

 

Robust interpretation and analysis of seismic datasets must be underpinned by good 

understanding of the physical processes that govern the seismic properties of reservoir rock as 

fluid and stress distributions change. 

 

6.2 IMPLEMENTATION 

 

The rock physics models are implemented as a Mathematica note book 

(DiSECCS_rock_physics_models.nb) included in the .mathematica directory of the DiSECCS 

toolbox. A free viewer can be downloaded from the URL: http://www.wolfram.com/cdf-player 

 

6.3 INPUT PARAMETERS 

 

The two rock physics models are based on a Squirt-flow model described in Chapman et al. 

(2002) and Chapman (2003). These models require the user to input a series of parameters 

describing the elastic properties of the rock matrix and the fluid inclusions (in this case formation 

brine and CO2). Example parameters for the Utsira Sand reservoir and caprock at the Sleipner 

injection operation are shown in Table 6.1 and 6.2, with CO2 and brine fluid properties in Figure 

6.1.  

 

Variable Utsira Sand Caprock Units Description 

KMineral 40x109 20x109 Pa Grain bulk modulus 
muGrain 20x109 10x109 Pa Grain shear modulus 

KDry 1.4x109 5.0x109 Pa Dry frame bulk modulus 
phi 0.37 0.2 - Porosity 
k 1.0x10-11 1.0x10-15 M2 Absolute permeability 
RhoSolid 2650.0 2650.0 Kg/m3 Matrix density 
muMatrix 0.83x109 1.0x1010 Pa Dry frame shear modulus   
AspectRatio 1.0x10-4 1.0x10-4 - Crack aspect ratio 
CrackDensity 0.01 0.01 - Crack density 
CharFreq 50.0 50.0 - Effective time scale 

Table 6.1. Elastic properties of the Utsira Sand reservoir and its caprock at the Sleipner CO2 injection site, 

for input into the rock physics models described below. 

 

 

Variable CO2 Brine Units Description 

K 7.9x107 2.4x109 Pa Bulk modulus 
eta 6.1x10-5 6.0x10-4 Pa.S Viscosity 

Rho 7.4x102 1.0x103 Kg/m3 Density 

Table 6.2. Fluid properties for brine and CO2 at 28 °C and 8 MPa, for input into the rock physics models 

described below. 

 

http://www.wolfram.com/cdf-player
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Figure 6.1. Fluid properties for CO2 and brine (w)  at a pressure of 8 MPa. (a) Density ρ; (b) bulk 

modulus K and (c) viscosity η. 

 

 

6.4 DETERMINING EFFECTIVE FLUID MODULUS IN A CRACKED POROUS 

MEDIUM 

 

The algorithms are based on a Squirt-flow model described in Chapman et al. (2002), Chapman 

(2003) and Papageorgiou & Chapman (2015), in which the grains of a porous material are 

themselves allowed to have porosity in the form of micro-cracks. The effective fluid moduli are 

computed by assuming that fluids are distributed between pores (Sp) and cracks (Sc) in the rock: 
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Where Sw is the water saturation, S0 is a critical saturation parameter and cf is given by: 

 

 
Where ε is the crack density and r the aspect ratio of the cracks. The cracks are modelled as coin-

like ellipsoidal inclusions with a crack density (ε) given by ε=
3φc

4πr
  where φc is the volume 

fraction of cracks in the effective medium. 

 

Pores and cracks are assigned different fluid moduli in the model as illustrated by the example 

pseudocode (Box 6.1). This formulation incorporates hysteresis effects, as the spatial distribution 

of fluids between cracks and pores will be different during imbibition and drainage (see 

Papageorgiou & Chapman 2015 for a detailed explanation).  

 

  

Box 6.1. Pseudo-code showing calculation of effective fluid moduli for use in the rock physics models 

described below. Input parameters are shown in red and are defined in Table 6.1 and 6.2. Output 

parameters are highlighted in blue. 

 

6.5 THE EFFECT OF CAPILLARY PRESSURE ON THE EFFECTIVE FLUID 

MODULUS 

 

                                    Equation 11 

                                                                                                        Equation 12 

/* input */ 

Phi /*porosity */ 

AspectRatio /* crack aspect ratio */ 

CrackDensity /* crack density */ 

waterModulus /* brine bulk modulus */ 

gasModulus /* CO2 bulk modulus */ 

 

/* calculate crack fraction */ 

crackFraction=(4/3*pi*CrackDensity*AspectRatio) 

/(4/3*pi*CrackDensity*AspectRatio + phi) 

 

/* calculate relative saturations */ 

If (0 < Sw < S0) 

Sp=Sw((1-cf/S0)/1-cf)) 

Sc=Sw/S0 

Else If (S0 < Sw < 1)  

Sp=(Sw -cf)/1-cf) 

Sc=1 

 

/* Output fluid moduli for pores and cracks */ 

CrackFluidModulus=1(Sc/waterModulus+1-Sc)/gasModulus) 

PoreFluidModulus=1(Sp/waterModulus+1-Sp)/gasModulus) 
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Papageorgiou et al. (2016) incorporated capillary pressure effects into their calculations of the 

effective fluid modulus by including a capillary pressure parameter q which relates the wetting 

and non-wetting phase fluid pressures: 

 
Where PCO2 is the CO2 (non-wetting phase) pressure, Pw the brine (wetting phase) pressure, KCO2 

the CO2 bulk modulus, and KW the brine bulk modulus.  

 

The effective fluid modulus (Kf) is then calculated by: 

 

 
 

Where SW is the brine saturation.  

 

Example pseudocode used to calculate Kf is shown in Box 6.26.2, while Figure 6.2 shows the 

effect on fluid bulk modulus of varying the parameter q. 

 

 

Box 6.2. Pseudo-code showing calculation of effective fluid moduli incorporating capillary pressure effects 

for use in rock physics model 2 described below. Input parameters are shown in red and are defined in 

Table 6.1 and Table 6.2. Output parameters are highlighted in blue. 

 

 

 

Figure 6.2. The effect of varying the capillary pressure parameter q on the effective fluid modulus (Kf). 

                                                                         Equation 13 

                                                             Equation 14 

/* input */ 

Sw /*water saturation */ 

waterModulus /* brine bulk modulus */ 

gasModulus /* CO2 bulk modulus */ 

q /* the q factor */ 

 

/* Output fluid modulus */ 

FluidModulus=… 

(Sw (1-q)+q)/(Sw/waterModulus+q*(1-Sw)/gasModulus) 
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6.6 THE EFFECTIVE TIMESCALE PARAMETER 

 

Squirt-flow models introduce stiffening in the saturated rock matrix, based on a relaxation 

mechanism whose characteristic frequency depends on fluid content as well as rock matrix 

parameters. Chapman (2003) showed that fluid mobility is the key parameter affecting the 

characteristic time scale of this process, a fact that has been verified experimentally many times. 

The characteristic frequency (ω) of squirt flow is given by: 

 

 
 

Where τ is the characteristic time scale, the coefficient B is a function of various rock properties 

(around 50 Pa for the Utsira Sand), SW is the water saturation, q as described above and k/η is the 

mobility of the effective fluid phase (relative phase permeability / phase viscosity).  

 

Combining relative permeability measurements for the Utsira Sand (Figure 6.3) with the fluid 

properties in Table 6.2 and Figure 6.1, it is evident that the characteristic frequency for squirt flow 

in the Utsira Sand lies just above the typical time-lapse seismic band at around 100 Hz (Figure 

6.4). 

 

 

 

 

Figure 6.3. Relative permeability of CO2 and brine in the Utsira Sand 

 

𝜔 =  
2 𝜋

𝜏
=

𝛣

(1− 𝑞) 𝑆𝑤  + 𝑞 
 
𝑘𝑤

𝜂𝑤
+ 𝑞

𝑘𝐶𝑂2

𝜂𝐶𝑂2
                                                  Equation 15 
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Figure 6.4. Characteristic frequency (ω0) as a function of capillary pressure parameter (q) and brine 

saturation. 

 

6.7 MODEL 1 

6.7.1 Theory 

The theoretical background to the model is described in Papageorgiou & Chapman (2015), which 

presents a generalized squirt flow model for two fluids, neglecting capillary pressure effects. 

Their model allows the calculation of effective fluid bulk modulus for use in rock physics analysis 

of the brine-CO2 system. 

6.7.2 Algorithm 

Example pseudocode used to calculate the bulk modulus is shown in Box 6.2. Inputs to the 

algorithm are contained in Table 6.1 and 6.2 and include the elastic properties of the rock matrix, 

pore fluids and the characteristic frequency (ω) of squirt flow. An example output is shown in 

Figure 6.5. 

 

 

Figure 6.5. Bulk modulus versus saturation relationship for Model 1. 
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Box 6.2. Pseudo-code showing calculation of P-wave bulk modulus using rock physics Model 1. 

Input parameters are shown in red and are defined in Table . Output parameters are highlighted 

in blue. 

 

 

/* input: see Tables 2 and 3 */ 

KMineral, muGrain, KDry, Phi, phip, K, rhoSolid, muMatrix, 

aspectRatio, crackDensity, CharFreq, K1, eta1, rho1, K2, eta2, 

rho2, Sw, Sc, omega 

 

/* Compute bulk rock density */ 

rho=(1-phi)*rhoSolid+phi*(Sw*rho1+(1-Sw)*rho2) 

 

/* Compute Poisson’s ratio */ 

nuGrain=(3*KMineral-2*muGrain)/(2*(3*KMineral+muGrain)) 

 

/* Compute Young’s ratio */ 

lambdaGrain=KMineral-2*muGrain/3 

 

/* Compute crack stiffness */ 

sigmac=(pi*muGrain*aspectRatio)/(2*(1-nuGrain)) 

 

/* Compute crack porosity */ 

phic=4*pi*crackDensity*aspectRatio/3 

 

/* Compute fluid bulk moduli */ 

[CrackFluidModulus,PoreFluidModulus]=Function in Box1[Phi, 

AspectRatio, CrackDensity, K1, K2] 

Kp=(4*muGrain)/(3*PoreFluidModulus) 

Kc=sigmac/CrackFluidModulus 

 

/* Compute time-scale parameter */ 

tau=2*pi/ω0[K1, eta1, rho1, K2, eta2, rho2, Sw] 

 

/* Intermediate calculations */ 

alpha=(1*i)*(phic*omega*tau)/sigmac 

beta=(1*i)*(3*phip*omega*tau)/(4*muGrain) 

A1=1+Kc 

A2=1+Kp 

B1=-KMineral 

B2=-3*KMineral*(1-nuGrain)/(1+nuGrain) 

 

/* Inclusion pressures solution in the frequency domain */ 

Pc=(beta*B2 + alpha*B1*(1+beta*A2))/(1-(1+alpha*A1)*(1+beta*A2)) 

Pp=(alpha*B1+beta*B2*(1+alpha*A1))/(1-(1+alpha*A1)*(1+beta*A2)) 

 

/* Output bulk modulus */ 

K=KDry+phic*(KMineral/sigmac+1) … 

*Pc+phip*((3*KMineral)/(4*muGrain)+1)*Pp 
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6.8 MODEL 2 

6.8.1 Theory 

The background to the model is described in Papageorgiou et al. (2016), which presents a 

theoretical derivation of a Brie-like fluid mixing law by incorporating a capillary pressure term 

into the inclusion-based model described above (see also Papageorgiou & Chapman 2015). The 

inclusions are saturated by multiple fluids. 

6.8.2 Algorithm 

Example pseudocode used to calculate the bulk modulus is shown in Box . Inputs to the algorithm 

are contained in Table 6.1 and 6.2. An example output is shown in Figure 6.6. 

 
Figure 6.6. P-wave velocity (top) and attenuation (bottom) versus saturation relationship for Model 2 in 

the case of supercritical CO2 (left) and liquid CO2 (right) across different frequency ranges (ω). 
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Box 6.4. Pseudo-code showing calculation of P-wave bulk modulus using rock physics Model 2. 

Input parameters are shown in red and are defined in Table 6.1 and 6.2. Output parameters are 

highlighted in blue. 

 

 

 

 

 

/* input: see Tables 2 and 3 */ 

KMineral, muGrain, KDry, Phi, phip, K, rhoSolid, muMatrix, 

aspectRatio, crackDensity, CharFreq, K1, eta1, rho1, K2, eta2, 

rho2, Sw, Sc, omega 

 

/* Compute bulk rock density */ 

rho=(1-phi)*rhoSolid+phi*(Sw*rho1+(1-Sw)*rho2) 

 

/* Compute Poisson’s ratio */ 

nuGrain=(3*KMineral-2*muGrain)/(2*(3*KMineral+muGrain)) 

 

/* Compute Young’s ratio */ 

lambdaGrain=KMineral-2*muGrain/3 

 

/* Compute crack stiffness */ 

sigmac=(pi*muGrain*aspectRatio)/(2*(1-nuGrain)) 

 

/* Compute crack porosity */ 

phic=4*pi*crackDensity*aspectRatio/3 

 

/* Compute fluid bulk moduli */ 

[FluidBulkModulus]=Function in Box2[Sw, K1, K2, q] 

Kp=(4*muGrain)/(3*FluidBulkModulus) 

Kc=sigmac/FluidBulkModulus 

 

/* Compute time-scale parameter */ 

tau=2*pi/ω0[K1, eta1, rho1, K2, eta2, rho2, Sw] 

 

/* Intermediate calculations */ 

alpha=(1*i)*(phic*omega*tau)/sigmac 

beta=(1*i)*(3*phip*omega*tau)/(4*muGrain) 

A1=1+Kc 

A2=1+Kp 

B1=-KMineral 

B2=-3*KMineral*(1-nuGrain)/(1+nuGrain) 

 

/* Inclusion pressures solution in the frequency domain */ 

Pc=(beta*B2 + alpha*B1*(1+beta*A2))/(1-(1+alpha*A1)*(1+beta*A2)) 

Pp=(alpha*B1+beta*B2*(1+alpha*A1))/(1-(1+alpha*A1)*(1+beta*A2)) 

 

/* Output bulk modulus */ 

K=KDry+phic*(KMineral/sigmac+1) … 

*Pc+phip*((3*KMineral)/(4*muGrain)+1)*Pp 
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7 Rock physics laboratory measurements 

7.1 BACKGROUND 

 

Direct measurement of rock samples in the laboratory provides the means of calibrating and 

verifying rock physics models such as those described above. Experimental work in DiSECCS 

focussed on unconsolidated sands such as are found at Sleipner and on synthetic rocks where 

properties in terms of porosity and permeability can to some extent be controlled. 

7.2 METHODOLOGY 

 

The experimental methodology can be found in the DiSECCS WP1 - 4 final report, with details of 

the experimental rig in Falcon-Suarez et al. (2014, 2016,2018). 

  

7.3 RESULTS 

 

An EXCEL spreadsheet containing measurements on a number of different samples, of P- and S- 

wave velocity, seismic attenuation and electrical resistivity are included in the spreadsheets 

directory of the DiSECCS Seismic Unix toolbox. Complete datasets of the experimental work 

developed during the project can be found on the UKCCSRC archive: 

http://www.bgs.ac.uk/ukccs/dataset.cfm?id=19877273  
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